File: Complete-Fermi_002dDirac-Integrals.html

package info (click to toggle)
gsl-ref-html 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 4,628 kB
  • ctags: 3,088
  • sloc: makefile: 33
file content (130 lines) | stat: -rw-r--r-- 7,640 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
<html lang="en">
<head>
<title>Complete Fermi-Dirac Integrals - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Fermi_002dDirac-Function.html" title="Fermi-Dirac Function">
<link rel="next" href="Incomplete-Fermi_002dDirac-Integrals.html" title="Incomplete Fermi-Dirac Integrals">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Complete-Fermi-Dirac-Integrals"></a>
<a name="Complete-Fermi_002dDirac-Integrals"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Incomplete-Fermi_002dDirac-Integrals.html">Incomplete Fermi-Dirac Integrals</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Fermi_002dDirac-Function.html">Fermi-Dirac Function</a>
<hr>
</div>

<h4 class="subsection">7.18.1 Complete Fermi-Dirac Integrals</h4>

<p><a name="index-complete-Fermi_002dDirac-integrals-557"></a><a name="index-Fj_0028x_0029_002c-Fermi_002dDirac-integral-558"></a>The complete Fermi-Dirac integral F_j(x) is given by,

<pre class="example">     F_j(x)   := (1/\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))
</pre>
   <p class="noindent">Note that the Fermi-Dirac integral is sometimes defined without the
normalisation factor in other texts.

<div class="defun">
&mdash; Function: double <b>gsl_sf_fermi_dirac_m1</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fm1-559"></a></var><br>
&mdash; Function: int <b>gsl_sf_fermi_dirac_m1_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fm1_005fe-560"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an index of -1. 
This integral is given by
<!-- {$F_{-1}(x) = e^x / (1 + e^x)$} -->
F_{-1}(x) = e^x / (1 + e^x). 
<!-- Exceptional Return Values: GSL_EUNDRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_fermi_dirac_0</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f0-561"></a></var><br>
&mdash; Function: int <b>gsl_sf_fermi_dirac_0_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f0_005fe-562"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an index of 0. 
This integral is given by F_0(x) = \ln(1 + e^x). 
<!-- Exceptional Return Values: GSL_EUNDRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_fermi_dirac_1</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f1-563"></a></var><br>
&mdash; Function: int <b>gsl_sf_fermi_dirac_1_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f1_005fe-564"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an index of 1,
F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1)). 
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_fermi_dirac_2</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f2-565"></a></var><br>
&mdash; Function: int <b>gsl_sf_fermi_dirac_2_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f2_005fe-566"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an index
of 2,
F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1)). 
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_fermi_dirac_int</b> (<var>int j, double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fint-567"></a></var><br>
&mdash; Function: int <b>gsl_sf_fermi_dirac_int_e</b> (<var>int j, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fint_005fe-568"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an integer
index of j,
F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1)). 
<!-- Complete integral F_j(x) for integer j -->
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_fermi_dirac_mhalf</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fmhalf-569"></a></var><br>
&mdash; Function: int <b>gsl_sf_fermi_dirac_mhalf_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fmhalf_005fe-570"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral
<!-- {$F_{-1/2}(x)$} -->
F_{-1/2}(x). 
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_fermi_dirac_half</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fhalf-571"></a></var><br>
&mdash; Function: int <b>gsl_sf_fermi_dirac_half_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fhalf_005fe-572"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral
<!-- {$F_{1/2}(x)$} -->
F_{1/2}(x). 
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_fermi_dirac_3half</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f3half-573"></a></var><br>
&mdash; Function: int <b>gsl_sf_fermi_dirac_3half_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f3half_005fe-574"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral
<!-- {$F_{3/2}(x)$} -->
F_{3/2}(x). 
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>