1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
<html lang="en">
<head>
<title>Complete Fermi-Dirac Integrals - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Fermi_002dDirac-Function.html" title="Fermi-Dirac Function">
<link rel="next" href="Incomplete-Fermi_002dDirac-Integrals.html" title="Incomplete Fermi-Dirac Integrals">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Complete-Fermi-Dirac-Integrals"></a>
<a name="Complete-Fermi_002dDirac-Integrals"></a>
Next: <a rel="next" accesskey="n" href="Incomplete-Fermi_002dDirac-Integrals.html">Incomplete Fermi-Dirac Integrals</a>,
Up: <a rel="up" accesskey="u" href="Fermi_002dDirac-Function.html">Fermi-Dirac Function</a>
<hr>
</div>
<h4 class="subsection">7.18.1 Complete Fermi-Dirac Integrals</h4>
<p><a name="index-complete-Fermi_002dDirac-integrals-557"></a><a name="index-Fj_0028x_0029_002c-Fermi_002dDirac-integral-558"></a>The complete Fermi-Dirac integral F_j(x) is given by,
<pre class="example"> F_j(x) := (1/\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))
</pre>
<p class="noindent">Note that the Fermi-Dirac integral is sometimes defined without the
normalisation factor in other texts.
<div class="defun">
— Function: double <b>gsl_sf_fermi_dirac_m1</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fm1-559"></a></var><br>
— Function: int <b>gsl_sf_fermi_dirac_m1_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fm1_005fe-560"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an index of -1.
This integral is given by
<!-- {$F_{-1}(x) = e^x / (1 + e^x)$} -->
F_{-1}(x) = e^x / (1 + e^x).
<!-- Exceptional Return Values: GSL_EUNDRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_fermi_dirac_0</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f0-561"></a></var><br>
— Function: int <b>gsl_sf_fermi_dirac_0_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f0_005fe-562"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an index of 0.
This integral is given by F_0(x) = \ln(1 + e^x).
<!-- Exceptional Return Values: GSL_EUNDRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_fermi_dirac_1</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f1-563"></a></var><br>
— Function: int <b>gsl_sf_fermi_dirac_1_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f1_005fe-564"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an index of 1,
F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1)).
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_fermi_dirac_2</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f2-565"></a></var><br>
— Function: int <b>gsl_sf_fermi_dirac_2_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f2_005fe-566"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an index
of 2,
F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1)).
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_fermi_dirac_int</b> (<var>int j, double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fint-567"></a></var><br>
— Function: int <b>gsl_sf_fermi_dirac_int_e</b> (<var>int j, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fint_005fe-568"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral with an integer
index of j,
F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1)).
<!-- Complete integral F_j(x) for integer j -->
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_fermi_dirac_mhalf</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fmhalf-569"></a></var><br>
— Function: int <b>gsl_sf_fermi_dirac_mhalf_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fmhalf_005fe-570"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral
<!-- {$F_{-1/2}(x)$} -->
F_{-1/2}(x).
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_fermi_dirac_half</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fhalf-571"></a></var><br>
— Function: int <b>gsl_sf_fermi_dirac_half_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005fhalf_005fe-572"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral
<!-- {$F_{1/2}(x)$} -->
F_{1/2}(x).
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_fermi_dirac_3half</b> (<var>double x</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f3half-573"></a></var><br>
— Function: int <b>gsl_sf_fermi_dirac_3half_e</b> (<var>double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005ffermi_005fdirac_005f3half_005fe-574"></a></var><br>
<blockquote><p>These routines compute the complete Fermi-Dirac integral
<!-- {$F_{3/2}(x)$} -->
F_{3/2}(x).
<!-- Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW -->
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|