File: Hypergeometric-Functions.html

package info (click to toggle)
gsl-ref-html 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 4,628 kB
  • ctags: 3,088
  • sloc: makefile: 33
file content (170 lines) | stat: -rw-r--r-- 10,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
<html lang="en">
<head>
<title>Hypergeometric Functions - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Special-Functions.html" title="Special Functions">
<link rel="prev" href="Gegenbauer-Functions.html" title="Gegenbauer Functions">
<link rel="next" href="Laguerre-Functions.html" title="Laguerre Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Hypergeometric-Functions"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Laguerre-Functions.html">Laguerre Functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Gegenbauer-Functions.html">Gegenbauer Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Special-Functions.html">Special Functions</a>
<hr>
</div>

<h3 class="section">7.21 Hypergeometric Functions</h3>

<p><a name="index-hypergeometric-functions-658"></a><a name="index-confluent-hypergeometric-functions-659"></a>
Hypergeometric functions are described in Abramowitz &amp; Stegun, Chapters
13 and 15.  These functions are declared in the header file
<samp><span class="file">gsl_sf_hyperg.h</span></samp>.

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_0F1</b> (<var>double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f0F1-660"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_0F1_e</b> (<var>double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f0F1_005fe-661"></a></var><br>
<blockquote><p>These routines compute the hypergeometric function <!-- {${}_0F_1(c,x)$} -->
0F1(c,x). 
<!-- It is related to Bessel functions -->
<!-- 0F1[c,x] = -->
<!-- Gamma[c]    x^(1/2(1-c)) I_(c-1)(2 Sqrt[x]) -->
<!-- Gamma[c] (-x)^(1/2(1-c)) J_(c-1)(2 Sqrt[-x]) -->
<!-- exceptions: GSL_EOVRFLW, GSL_EUNDRFLW -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_1F1_int</b> (<var>int m, int n, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fint-662"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_1F1_int_e</b> (<var>int m, int n, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fint_005fe-663"></a></var><br>
<blockquote><p>These routines compute the confluent hypergeometric function
<!-- {${}_1F_1(m,n,x) = M(m,n,x)$} -->
1F1(m,n,x) = M(m,n,x) for integer parameters <var>m</var>, <var>n</var>. 
<!-- exceptions: -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_1F1</b> (<var>double a, double b, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f1F1-664"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_1F1_e</b> (<var>double a, double b, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fe-665"></a></var><br>
<blockquote><p>These routines compute the confluent hypergeometric function
<!-- {${}_1F_1(a,b,x) = M(a,b,x)$} -->
1F1(a,b,x) = M(a,b,x) for general parameters <var>a</var>, <var>b</var>. 
<!-- exceptions: -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_U_int</b> (<var>int m, int n, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fint-666"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_U_int_e</b> (<var>int m, int n, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fint_005fe-667"></a></var><br>
<blockquote><p>These routines compute the confluent hypergeometric function
U(m,n,x) for integer parameters <var>m</var>, <var>n</var>. 
<!-- exceptions: -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_sf_hyperg_U_int_e10_e</b> (<var>int m, int n, double x, gsl_sf_result_e10 * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fint_005fe10_005fe-668"></a></var><br>
<blockquote><p>This routine computes the confluent hypergeometric function
U(m,n,x) for integer parameters <var>m</var>, <var>n</var> using the
<code>gsl_sf_result_e10</code> type to return a result with extended range. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_U</b> (<var>double a, double b, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU-669"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_U_e</b> (<var>double a, double b, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fe-670"></a></var><br>
<blockquote><p>These routines compute the confluent hypergeometric function U(a,b,x). 
<!-- exceptions: -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: int <b>gsl_sf_hyperg_U_e10_e</b> (<var>double a, double b, double x, gsl_sf_result_e10 * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fe10_005fe-671"></a></var><br>
<blockquote><p>This routine computes the confluent hypergeometric function
U(a,b,x) using the <code>gsl_sf_result_e10</code> type to return a
result with extended range. 
<!-- exceptions: -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_2F1</b> (<var>double a, double b, double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1-672"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_2F1_e</b> (<var>double a, double b, double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fe-673"></a></var><br>
<blockquote><p>These routines compute the Gauss hypergeometric function
<!-- {${}_2F_1(a,b,c,x) = F(a,b,c,x)$} -->
2F1(a,b,c,x) = F(a,b,c,x) for |x| &lt; 1.

        <p>If the arguments (a,b,c,x) are too close to a singularity then
the function can return the error code <code>GSL_EMAXITER</code> when the
series approximation converges too slowly.  This occurs in the region of
x=1, c - a - b = m for integer m. 
<!-- exceptions: -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_2F1_conj</b> (<var>double aR, double aI, double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj-674"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_2F1_conj_e</b> (<var>double aR, double aI, double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005fe-675"></a></var><br>
<blockquote><p>These routines compute the Gauss hypergeometric function
<!-- {${}_2F_1(a_R + i a_I, aR - i aI, c, x)$} -->
2F1(a_R + i a_I, a_R - i a_I, c, x) with complex parameters
for |x| &lt; 1. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_2F1_renorm</b> (<var>double a, double b, double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005frenorm-676"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_2F1_renorm_e</b> (<var>double a, double b, double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005frenorm_005fe-677"></a></var><br>
<blockquote><p>These routines compute the renormalized Gauss hypergeometric function
<!-- {${}_2F_1(a,b,c,x) / \Gamma(c)$} -->
2F1(a,b,c,x) / \Gamma(c) for |x| &lt; 1. 
<!-- exceptions: -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_2F1_conj_renorm</b> (<var>double aR, double aI, double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005frenorm-678"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_2F1_conj_renorm_e</b> (<var>double aR, double aI, double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005frenorm_005fe-679"></a></var><br>
<blockquote><p>These routines compute the renormalized Gauss hypergeometric function
<!-- {${}_2F_1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)$} -->
2F1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c) for |x| &lt; 1. 
<!-- exceptions: -->
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_sf_hyperg_2F0</b> (<var>double a, double b, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F0-680"></a></var><br>
&mdash; Function: int <b>gsl_sf_hyperg_2F0_e</b> (<var>double a, double b, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F0_005fe-681"></a></var><br>
<blockquote><p>These routines compute the hypergeometric function <!-- {${}_2F_0(a,b,x)$} -->
2F0(a,b,x).  The series representation
is a divergent hypergeometric series.  However, for x &lt; 0 we
have
<!-- {${}_2F_0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)$} -->
2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)
<!-- exceptions: GSL_EDOM -->
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>