1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
<html lang="en">
<head>
<title>Hypergeometric Functions - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Special-Functions.html" title="Special Functions">
<link rel="prev" href="Gegenbauer-Functions.html" title="Gegenbauer Functions">
<link rel="next" href="Laguerre-Functions.html" title="Laguerre Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Hypergeometric-Functions"></a>
Next: <a rel="next" accesskey="n" href="Laguerre-Functions.html">Laguerre Functions</a>,
Previous: <a rel="previous" accesskey="p" href="Gegenbauer-Functions.html">Gegenbauer Functions</a>,
Up: <a rel="up" accesskey="u" href="Special-Functions.html">Special Functions</a>
<hr>
</div>
<h3 class="section">7.21 Hypergeometric Functions</h3>
<p><a name="index-hypergeometric-functions-658"></a><a name="index-confluent-hypergeometric-functions-659"></a>
Hypergeometric functions are described in Abramowitz & Stegun, Chapters
13 and 15. These functions are declared in the header file
<samp><span class="file">gsl_sf_hyperg.h</span></samp>.
<div class="defun">
— Function: double <b>gsl_sf_hyperg_0F1</b> (<var>double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f0F1-660"></a></var><br>
— Function: int <b>gsl_sf_hyperg_0F1_e</b> (<var>double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f0F1_005fe-661"></a></var><br>
<blockquote><p>These routines compute the hypergeometric function <!-- {${}_0F_1(c,x)$} -->
0F1(c,x).
<!-- It is related to Bessel functions -->
<!-- 0F1[c,x] = -->
<!-- Gamma[c] x^(1/2(1-c)) I_(c-1)(2 Sqrt[x]) -->
<!-- Gamma[c] (-x)^(1/2(1-c)) J_(c-1)(2 Sqrt[-x]) -->
<!-- exceptions: GSL_EOVRFLW, GSL_EUNDRFLW -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_1F1_int</b> (<var>int m, int n, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fint-662"></a></var><br>
— Function: int <b>gsl_sf_hyperg_1F1_int_e</b> (<var>int m, int n, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fint_005fe-663"></a></var><br>
<blockquote><p>These routines compute the confluent hypergeometric function
<!-- {${}_1F_1(m,n,x) = M(m,n,x)$} -->
1F1(m,n,x) = M(m,n,x) for integer parameters <var>m</var>, <var>n</var>.
<!-- exceptions: -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_1F1</b> (<var>double a, double b, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f1F1-664"></a></var><br>
— Function: int <b>gsl_sf_hyperg_1F1_e</b> (<var>double a, double b, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fe-665"></a></var><br>
<blockquote><p>These routines compute the confluent hypergeometric function
<!-- {${}_1F_1(a,b,x) = M(a,b,x)$} -->
1F1(a,b,x) = M(a,b,x) for general parameters <var>a</var>, <var>b</var>.
<!-- exceptions: -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_U_int</b> (<var>int m, int n, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fint-666"></a></var><br>
— Function: int <b>gsl_sf_hyperg_U_int_e</b> (<var>int m, int n, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fint_005fe-667"></a></var><br>
<blockquote><p>These routines compute the confluent hypergeometric function
U(m,n,x) for integer parameters <var>m</var>, <var>n</var>.
<!-- exceptions: -->
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_sf_hyperg_U_int_e10_e</b> (<var>int m, int n, double x, gsl_sf_result_e10 * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fint_005fe10_005fe-668"></a></var><br>
<blockquote><p>This routine computes the confluent hypergeometric function
U(m,n,x) for integer parameters <var>m</var>, <var>n</var> using the
<code>gsl_sf_result_e10</code> type to return a result with extended range.
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_U</b> (<var>double a, double b, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU-669"></a></var><br>
— Function: int <b>gsl_sf_hyperg_U_e</b> (<var>double a, double b, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fe-670"></a></var><br>
<blockquote><p>These routines compute the confluent hypergeometric function U(a,b,x).
<!-- exceptions: -->
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_sf_hyperg_U_e10_e</b> (<var>double a, double b, double x, gsl_sf_result_e10 * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005fU_005fe10_005fe-671"></a></var><br>
<blockquote><p>This routine computes the confluent hypergeometric function
U(a,b,x) using the <code>gsl_sf_result_e10</code> type to return a
result with extended range.
<!-- exceptions: -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_2F1</b> (<var>double a, double b, double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1-672"></a></var><br>
— Function: int <b>gsl_sf_hyperg_2F1_e</b> (<var>double a, double b, double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fe-673"></a></var><br>
<blockquote><p>These routines compute the Gauss hypergeometric function
<!-- {${}_2F_1(a,b,c,x) = F(a,b,c,x)$} -->
2F1(a,b,c,x) = F(a,b,c,x) for |x| < 1.
<p>If the arguments (a,b,c,x) are too close to a singularity then
the function can return the error code <code>GSL_EMAXITER</code> when the
series approximation converges too slowly. This occurs in the region of
x=1, c - a - b = m for integer m.
<!-- exceptions: -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_2F1_conj</b> (<var>double aR, double aI, double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj-674"></a></var><br>
— Function: int <b>gsl_sf_hyperg_2F1_conj_e</b> (<var>double aR, double aI, double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005fe-675"></a></var><br>
<blockquote><p>These routines compute the Gauss hypergeometric function
<!-- {${}_2F_1(a_R + i a_I, aR - i aI, c, x)$} -->
2F1(a_R + i a_I, a_R - i a_I, c, x) with complex parameters
for |x| < 1.
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_2F1_renorm</b> (<var>double a, double b, double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005frenorm-676"></a></var><br>
— Function: int <b>gsl_sf_hyperg_2F1_renorm_e</b> (<var>double a, double b, double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005frenorm_005fe-677"></a></var><br>
<blockquote><p>These routines compute the renormalized Gauss hypergeometric function
<!-- {${}_2F_1(a,b,c,x) / \Gamma(c)$} -->
2F1(a,b,c,x) / \Gamma(c) for |x| < 1.
<!-- exceptions: -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_2F1_conj_renorm</b> (<var>double aR, double aI, double c, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005frenorm-678"></a></var><br>
— Function: int <b>gsl_sf_hyperg_2F1_conj_renorm_e</b> (<var>double aR, double aI, double c, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005frenorm_005fe-679"></a></var><br>
<blockquote><p>These routines compute the renormalized Gauss hypergeometric function
<!-- {${}_2F_1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)$} -->
2F1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c) for |x| < 1.
<!-- exceptions: -->
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_sf_hyperg_2F0</b> (<var>double a, double b, double x</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F0-680"></a></var><br>
— Function: int <b>gsl_sf_hyperg_2F0_e</b> (<var>double a, double b, double x, gsl_sf_result * result</var>)<var><a name="index-gsl_005fsf_005fhyperg_005f2F0_005fe-681"></a></var><br>
<blockquote><p>These routines compute the hypergeometric function <!-- {${}_2F_0(a,b,x)$} -->
2F0(a,b,x). The series representation
is a divergent hypergeometric series. However, for x < 0 we
have
<!-- {${}_2F_0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)$} -->
2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)
<!-- exceptions: GSL_EDOM -->
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|