File: Minimization-Caveats.html

package info (click to toggle)
gsl-ref-html 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 4,628 kB
  • ctags: 3,088
  • sloc: makefile: 33
file content (76 lines) | stat: -rw-r--r-- 3,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
<html lang="en">
<head>
<title>Minimization Caveats - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="One-dimensional-Minimization.html" title="One dimensional Minimization">
<link rel="prev" href="Minimization-Overview.html" title="Minimization Overview">
<link rel="next" href="Initializing-the-Minimizer.html" title="Initializing the Minimizer">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Minimization-Caveats"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Initializing-the-Minimizer.html">Initializing the Minimizer</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Minimization-Overview.html">Minimization Overview</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="One-dimensional-Minimization.html">One dimensional Minimization</a>
<hr>
</div>

<h3 class="section">34.2 Caveats</h3>

<p><a name="index-minimization_002c-caveats-2399"></a>
Note that minimization functions can only search for one minimum at a
time.  When there are several minima in the search area, the first
minimum to be found will be returned; however it is difficult to predict
which of the minima this will be. <em>In most cases, no error will be
reported if you try to find a minimum in an area where there is more
than one.</em>

   <p>With all minimization algorithms it can be difficult to determine the
location of the minimum to full numerical precision.  The behavior of the
function in the region of the minimum x^* can be approximated by
a Taylor expansion,

<pre class="example">     y = f(x^*) + (1/2) f''(x^*) (x - x^*)^2
</pre>
   <p class="noindent">and the second term of this expansion can be lost when added to the
first term at finite precision.  This magnifies the error in locating
x^*, making it proportional to \sqrt \epsilon (where
\epsilon is the relative accuracy of the floating point numbers). 
For functions with higher order minima, such as x^4, the
magnification of the error is correspondingly worse.  The best that can
be achieved is to converge to the limit of numerical accuracy in the
function values, rather than the location of the minimum itself.

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>