File: Multimin-Examples.html

package info (click to toggle)
gsl-ref-html 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 4,628 kB
  • ctags: 3,088
  • sloc: makefile: 33
file content (245 lines) | stat: -rw-r--r-- 9,613 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
<html lang="en">
<head>
<title>Multimin Examples - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Multidimensional-Minimization.html" title="Multidimensional Minimization">
<link rel="prev" href="Multimin-Algorithms-without-Derivatives.html" title="Multimin Algorithms without Derivatives">
<link rel="next" href="Multimin-References-and-Further-Reading.html" title="Multimin References and Further Reading">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="Multimin-Examples"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="Multimin-References-and-Further-Reading.html">Multimin References and Further Reading</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Multimin-Algorithms-without-Derivatives.html">Multimin Algorithms without Derivatives</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Multidimensional-Minimization.html">Multidimensional Minimization</a>
<hr>
</div>

<h3 class="section">36.9 Examples</h3>

<p>This example program finds the minimum of the paraboloid function
defined earlier.  The location of the minimum is offset from the origin
in x and y, and the function value at the minimum is
non-zero. The main program is given below, it requires the example
function given earlier in this chapter.

<pre class="smallexample"><pre class="verbatim">     int
     main (void)
     {
       size_t iter = 0;
       int status;
     
       const gsl_multimin_fdfminimizer_type *T;
       gsl_multimin_fdfminimizer *s;
     
       /* Position of the minimum (1,2), scale factors 
          10,20, height 30. */
       double par[5] = { 1.0, 2.0, 10.0, 20.0, 30.0 };
     
       gsl_vector *x;
       gsl_multimin_function_fdf my_func;
     
       my_func.n = 2;
       my_func.f = my_f;
       my_func.df = my_df;
       my_func.fdf = my_fdf;
       my_func.params = par;
     
       /* Starting point, x = (5,7) */
       x = gsl_vector_alloc (2);
       gsl_vector_set (x, 0, 5.0);
       gsl_vector_set (x, 1, 7.0);
     
       T = gsl_multimin_fdfminimizer_conjugate_fr;
       s = gsl_multimin_fdfminimizer_alloc (T, 2);
     
       gsl_multimin_fdfminimizer_set (s, &amp;my_func, x, 0.01, 1e-4);
     
       do
         {
           iter++;
           status = gsl_multimin_fdfminimizer_iterate (s);
     
           if (status)
             break;
     
           status = gsl_multimin_test_gradient (s->gradient, 1e-3);
     
           if (status == GSL_SUCCESS)
             printf ("Minimum found at:\n");
     
           printf ("%5d %.5f %.5f %10.5f\n", iter,
                   gsl_vector_get (s->x, 0), 
                   gsl_vector_get (s->x, 1), 
                   s->f);
     
         }
       while (status == GSL_CONTINUE &amp;&amp; iter &lt; 100);
     
       gsl_multimin_fdfminimizer_free (s);
       gsl_vector_free (x);
     
       return 0;
     }
</pre></pre>
   <p class="noindent">The initial step-size is chosen as 0.01, a conservative estimate in this
case, and the line minimization parameter is set at 0.0001.  The program
terminates when the norm of the gradient has been reduced below
0.001. The output of the program is shown below,

<pre class="example"><pre class="verbatim">              x       y         f
         1 4.99629 6.99072  687.84780
         2 4.98886 6.97215  683.55456
         3 4.97400 6.93501  675.01278
         4 4.94429 6.86073  658.10798
         5 4.88487 6.71217  625.01340
         6 4.76602 6.41506  561.68440
         7 4.52833 5.82083  446.46694
         8 4.05295 4.63238  261.79422
         9 3.10219 2.25548   75.49762
        10 2.85185 1.62963   67.03704
        11 2.19088 1.76182   45.31640
        12 0.86892 2.02622   30.18555
     Minimum found at:
        13 1.00000 2.00000   30.00000
</pre></pre>
   <p class="noindent">Note that the algorithm gradually increases the step size as it
successfully moves downhill, as can be seen by plotting the successive
points.

<p class="noindent">The conjugate gradient algorithm finds the minimum on its second
direction because the function is purely quadratic. Additional
iterations would be needed for a more complicated function.

   <p>Here is another example using the Nelder-Mead Simplex algorithm to
minimize the same example object function, as above.

<pre class="smallexample"><pre class="verbatim">     int 
     main(void)
     {
       double par[5] = {1.0, 2.0, 10.0, 20.0, 30.0};
     
       const gsl_multimin_fminimizer_type *T = 
         gsl_multimin_fminimizer_nmsimplex2;
       gsl_multimin_fminimizer *s = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
     
       size_t iter = 0;
       int status;
       double size;
     
       /* Starting point */
       x = gsl_vector_alloc (2);
       gsl_vector_set (x, 0, 5.0);
       gsl_vector_set (x, 1, 7.0);
     
       /* Set initial step sizes to 1 */
       ss = gsl_vector_alloc (2);
       gsl_vector_set_all (ss, 1.0);
     
       /* Initialize method and iterate */
       minex_func.n = 2;
       minex_func.f = my_f;
       minex_func.params = par;
     
       s = gsl_multimin_fminimizer_alloc (T, 2);
       gsl_multimin_fminimizer_set (s, &amp;minex_func, x, ss);
     
       do
         {
           iter++;
           status = gsl_multimin_fminimizer_iterate(s);
           
           if (status) 
             break;
     
           size = gsl_multimin_fminimizer_size (s);
           status = gsl_multimin_test_size (size, 1e-2);
     
           if (status == GSL_SUCCESS)
             {
               printf ("converged to minimum at\n");
             }
     
           printf ("%5d %10.3e %10.3e f() = %7.3f size = %.3f\n", 
                   iter,
                   gsl_vector_get (s->x, 0), 
                   gsl_vector_get (s->x, 1), 
                   s->fval, size);
         }
       while (status == GSL_CONTINUE &amp;&amp; iter &lt; 100);
       
       gsl_vector_free(x);
       gsl_vector_free(ss);
       gsl_multimin_fminimizer_free (s);
     
       return status;
     }
</pre></pre>
   <p class="noindent">The minimum search stops when the Simplex size drops to 0.01. The output is
shown below.

<pre class="example"><pre class="verbatim">         1  6.500e+00  5.000e+00 f() = 512.500 size = 1.130
         2  5.250e+00  4.000e+00 f() = 290.625 size = 1.409
         3  5.250e+00  4.000e+00 f() = 290.625 size = 1.409
         4  5.500e+00  1.000e+00 f() = 252.500 size = 1.409
         5  2.625e+00  3.500e+00 f() = 101.406 size = 1.847
         6  2.625e+00  3.500e+00 f() = 101.406 size = 1.847
         7  0.000e+00  3.000e+00 f() =  60.000 size = 1.847
         8  2.094e+00  1.875e+00 f() =  42.275 size = 1.321
         9  2.578e-01  1.906e+00 f() =  35.684 size = 1.069
        10  5.879e-01  2.445e+00 f() =  35.664 size = 0.841
        11  1.258e+00  2.025e+00 f() =  30.680 size = 0.476
        12  1.258e+00  2.025e+00 f() =  30.680 size = 0.367
        13  1.093e+00  1.849e+00 f() =  30.539 size = 0.300
        14  8.830e-01  2.004e+00 f() =  30.137 size = 0.172
        15  8.830e-01  2.004e+00 f() =  30.137 size = 0.126
        16  9.582e-01  2.060e+00 f() =  30.090 size = 0.106
        17  1.022e+00  2.004e+00 f() =  30.005 size = 0.063
        18  1.022e+00  2.004e+00 f() =  30.005 size = 0.043
        19  1.022e+00  2.004e+00 f() =  30.005 size = 0.043
        20  1.022e+00  2.004e+00 f() =  30.005 size = 0.027
        21  1.022e+00  2.004e+00 f() =  30.005 size = 0.022
        22  9.920e-01  1.997e+00 f() =  30.001 size = 0.016
        23  9.920e-01  1.997e+00 f() =  30.001 size = 0.013
     converged to minimum at
        24  9.920e-01  1.997e+00 f() =  30.001 size = 0.008
</pre></pre>
   <p class="noindent">The simplex size first increases, while the simplex moves towards the
minimum. After a while the size begins to decrease as the simplex
contracts around the minimum.

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>