File: The-Dirichlet-Distribution.html

package info (click to toggle)
gsl-ref-html 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 4,628 kB
  • ctags: 3,088
  • sloc: makefile: 33
file content (94 lines) | stat: -rw-r--r-- 4,953 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
<html lang="en">
<head>
<title>The Dirichlet Distribution - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="prev" href="The-Type_002d2-Gumbel-Distribution.html" title="The Type-2 Gumbel Distribution">
<link rel="next" href="General-Discrete-Distributions.html" title="General Discrete Distributions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="The-Dirichlet-Distribution"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="General-Discrete-Distributions.html">General Discrete Distributions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="The-Type_002d2-Gumbel-Distribution.html">The Type-2 Gumbel Distribution</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>

<h3 class="section">20.27 The Dirichlet Distribution</h3>

<div class="defun">
&mdash; Function: void <b>gsl_ran_dirichlet</b> (<var>const gsl_rng * r, size_t K, const double alpha</var>[]<var>, double theta</var>[])<var><a name="index-gsl_005fran_005fdirichlet-1853"></a></var><br>
<blockquote><p><a name="index-Dirichlet-distribution-1854"></a>This function returns an array of <var>K</var> random variates from a Dirichlet
distribution of order <var>K</var>-1. The distribution function is

     <pre class="example">          p(\theta_1, ..., \theta_K) d\theta_1 ... d\theta_K =
            (1/Z) \prod_{i=1}^K \theta_i^{\alpha_i - 1} \delta(1 -\sum_{i=1}^K \theta_i) d\theta_1 ... d\theta_K
</pre>
        <p class="noindent">for <!-- {$\theta_i \ge 0$} -->
theta_i &gt;= 0
and <!-- {$\alpha_i > 0$} -->
alpha_i &gt; 0.  The delta function ensures that \sum \theta_i = 1. 
The normalization factor Z is

     <pre class="example">          Z = {\prod_{i=1}^K \Gamma(\alpha_i)} / {\Gamma( \sum_{i=1}^K \alpha_i)}
</pre>
        <p>The random variates are generated by sampling <var>K</var> values
from gamma distributions with parameters
<!-- {$a=\alpha_i$, $b=1$} -->
a=alpha_i, b=1,
and renormalizing. 
See A.M. Law, W.D. Kelton, <cite>Simulation Modeling and Analysis</cite> (1991). 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_dirichlet_pdf</b> (<var>size_t K, const double alpha</var>[]<var>, const double theta</var>[])<var><a name="index-gsl_005fran_005fdirichlet_005fpdf-1855"></a></var><br>
<blockquote><p>This function computes the probability density
<!-- {$p(\theta_1, \ldots , \theta_K)$} -->
p(\theta_1, ... , \theta_K)
at <var>theta</var>[<var>K</var>] for a Dirichlet distribution with parameters
<var>alpha</var>[<var>K</var>], using the formula given above. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_dirichlet_lnpdf</b> (<var>size_t K, const double alpha</var>[]<var>, const double theta</var>[])<var><a name="index-gsl_005fran_005fdirichlet_005flnpdf-1856"></a></var><br>
<blockquote><p>This function computes the logarithm of the probability density
<!-- {$p(\theta_1, \ldots , \theta_K)$} -->
p(\theta_1, ... , \theta_K)
for a Dirichlet distribution with parameters
<var>alpha</var>[<var>K</var>]. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>