1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
<html lang="en">
<head>
<title>The Dirichlet Distribution - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="prev" href="The-Type_002d2-Gumbel-Distribution.html" title="The Type-2 Gumbel Distribution">
<link rel="next" href="General-Discrete-Distributions.html" title="General Discrete Distributions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<p>
<a name="The-Dirichlet-Distribution"></a>
Next: <a rel="next" accesskey="n" href="General-Discrete-Distributions.html">General Discrete Distributions</a>,
Previous: <a rel="previous" accesskey="p" href="The-Type_002d2-Gumbel-Distribution.html">The Type-2 Gumbel Distribution</a>,
Up: <a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>
<h3 class="section">20.27 The Dirichlet Distribution</h3>
<div class="defun">
— Function: void <b>gsl_ran_dirichlet</b> (<var>const gsl_rng * r, size_t K, const double alpha</var>[]<var>, double theta</var>[])<var><a name="index-gsl_005fran_005fdirichlet-1853"></a></var><br>
<blockquote><p><a name="index-Dirichlet-distribution-1854"></a>This function returns an array of <var>K</var> random variates from a Dirichlet
distribution of order <var>K</var>-1. The distribution function is
<pre class="example"> p(\theta_1, ..., \theta_K) d\theta_1 ... d\theta_K =
(1/Z) \prod_{i=1}^K \theta_i^{\alpha_i - 1} \delta(1 -\sum_{i=1}^K \theta_i) d\theta_1 ... d\theta_K
</pre>
<p class="noindent">for <!-- {$\theta_i \ge 0$} -->
theta_i >= 0
and <!-- {$\alpha_i > 0$} -->
alpha_i > 0. The delta function ensures that \sum \theta_i = 1.
The normalization factor Z is
<pre class="example"> Z = {\prod_{i=1}^K \Gamma(\alpha_i)} / {\Gamma( \sum_{i=1}^K \alpha_i)}
</pre>
<p>The random variates are generated by sampling <var>K</var> values
from gamma distributions with parameters
<!-- {$a=\alpha_i$, $b=1$} -->
a=alpha_i, b=1,
and renormalizing.
See A.M. Law, W.D. Kelton, <cite>Simulation Modeling and Analysis</cite> (1991).
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_ran_dirichlet_pdf</b> (<var>size_t K, const double alpha</var>[]<var>, const double theta</var>[])<var><a name="index-gsl_005fran_005fdirichlet_005fpdf-1855"></a></var><br>
<blockquote><p>This function computes the probability density
<!-- {$p(\theta_1, \ldots , \theta_K)$} -->
p(\theta_1, ... , \theta_K)
at <var>theta</var>[<var>K</var>] for a Dirichlet distribution with parameters
<var>alpha</var>[<var>K</var>], using the formula given above.
</p></blockquote></div>
<div class="defun">
— Function: double <b>gsl_ran_dirichlet_lnpdf</b> (<var>size_t K, const double alpha</var>[]<var>, const double theta</var>[])<var><a name="index-gsl_005fran_005fdirichlet_005flnpdf-1856"></a></var><br>
<blockquote><p>This function computes the logarithm of the probability density
<!-- {$p(\theta_1, \ldots , \theta_K)$} -->
p(\theta_1, ... , \theta_K)
for a Dirichlet distribution with parameters
<var>alpha</var>[<var>K</var>].
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|