File: The-Hypergeometric-Distribution.html

package info (click to toggle)
gsl-ref-html 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 4,628 kB
  • ctags: 3,088
  • sloc: makefile: 33
file content (94 lines) | stat: -rw-r--r-- 4,951 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
<html lang="en">
<head>
<title>The Hypergeometric Distribution - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="prev" href="The-Geometric-Distribution.html" title="The Geometric Distribution">
<link rel="next" href="The-Logarithmic-Distribution.html" title="The Logarithmic Distribution">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="The-Hypergeometric-Distribution"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="The-Logarithmic-Distribution.html">The Logarithmic Distribution</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="The-Geometric-Distribution.html">The Geometric Distribution</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>

<h3 class="section">20.36 The Hypergeometric Distribution</h3>

<p><a name="index-hypergeometric-random-variates-1898"></a>

<div class="defun">
&mdash; Function: unsigned int <b>gsl_ran_hypergeometric</b> (<var>const gsl_rng * r, unsigned int n1, unsigned int n2, unsigned int t</var>)<var><a name="index-gsl_005fran_005fhypergeometric-1899"></a></var><br>
<blockquote><p><a name="index-Geometric-random-variates-1900"></a>This function returns a random integer from the hypergeometric
distribution.  The probability distribution for hypergeometric
random variates is,

     <pre class="example">          p(k) =  C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t)
</pre>
        <p class="noindent">where C(a,b) = a!/(b!(a-b)!) and
<!-- {$t \leq n_1 + n_2$} -->
t &lt;= n_1 + n_2.  The domain of k is
<!-- {$\hbox{max}(0,t-n_2), \ldots, \hbox{min}(t,n_1)$} -->
max(0,t-n_2), ..., min(t,n_1).

        <p>If a population contains n_1 elements of &ldquo;type 1&rdquo; and
n_2 elements of &ldquo;type 2&rdquo; then the hypergeometric
distribution gives the probability of obtaining k elements of
&ldquo;type 1&rdquo; in t samples from the population without
replacement. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_hypergeometric_pdf</b> (<var>unsigned int k, unsigned int n1, unsigned int n2, unsigned int t</var>)<var><a name="index-gsl_005fran_005fhypergeometric_005fpdf-1901"></a></var><br>
<blockquote><p>This function computes the probability p(k) of obtaining <var>k</var>
from a hypergeometric distribution with parameters <var>n1</var>, <var>n2</var>,
<var>t</var>, using the formula given above. 
</p></blockquote></div>

   <pre class="sp">

</pre>

<div class="defun">
&mdash; Function: double <b>gsl_cdf_hypergeometric_P</b> (<var>unsigned int k, unsigned int n1, unsigned int n2, unsigned int t</var>)<var><a name="index-gsl_005fcdf_005fhypergeometric_005fP-1902"></a></var><br>
&mdash; Function: double <b>gsl_cdf_hypergeometric_Q</b> (<var>unsigned int k, unsigned int n1, unsigned int n2, unsigned int t</var>)<var><a name="index-gsl_005fcdf_005fhypergeometric_005fQ-1903"></a></var><br>
<blockquote><p>These functions compute the cumulative distribution functions
P(k), Q(k) for the hypergeometric distribution with
parameters <var>n1</var>, <var>n2</var> and <var>t</var>. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>