File: The-t_002ddistribution.html

package info (click to toggle)
gsl-ref-html 1.14-1
  • links: PTS
  • area: non-free
  • in suites: squeeze
  • size: 4,628 kB
  • ctags: 3,088
  • sloc: makefile: 33
file content (93 lines) | stat: -rw-r--r-- 4,773 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
<html lang="en">
<head>
<title>The t-distribution - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.11">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="prev" href="The-F_002ddistribution.html" title="The F-distribution">
<link rel="next" href="The-Beta-Distribution.html" title="The Beta Distribution">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<p>
<a name="The-t-distribution"></a>
<a name="The-t_002ddistribution"></a>
Next:&nbsp;<a rel="next" accesskey="n" href="The-Beta-Distribution.html">The Beta Distribution</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="The-F_002ddistribution.html">The F-distribution</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>

<h3 class="section">20.19 The t-distribution</h3>

<p>The t-distribution arises in statistics.  If Y_1 has a normal
distribution and Y_2 has a chi-squared distribution with
\nu degrees of freedom then the ratio,

<pre class="example">     X = { Y_1 \over \sqrt{Y_2 / \nu} }
</pre>
   <p class="noindent">has a t-distribution t(x;\nu) with \nu degrees of freedom.

<div class="defun">
&mdash; Function: double <b>gsl_ran_tdist</b> (<var>const gsl_rng * r, double nu</var>)<var><a name="index-gsl_005fran_005ftdist-1788"></a></var><br>
<blockquote><p><a name="index-t_002ddistribution-1789"></a><a name="index-Student-t_002ddistribution-1790"></a>This function returns a random variate from the t-distribution.  The
distribution function is,

     <pre class="example">          p(x) dx = {\Gamma((\nu + 1)/2) \over \sqrt{\pi \nu} \Gamma(\nu/2)}
             (1 + x^2/\nu)^{-(\nu + 1)/2} dx
</pre>
        <p class="noindent">for -\infty &lt; x &lt; +\infty. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_tdist_pdf</b> (<var>double x, double nu</var>)<var><a name="index-gsl_005fran_005ftdist_005fpdf-1791"></a></var><br>
<blockquote><p>This function computes the probability density p(x) at <var>x</var>
for a t-distribution with <var>nu</var> degrees of freedom, using the formula
given above. 
</p></blockquote></div>

   <pre class="sp">

</pre>

<div class="defun">
&mdash; Function: double <b>gsl_cdf_tdist_P</b> (<var>double x, double nu</var>)<var><a name="index-gsl_005fcdf_005ftdist_005fP-1792"></a></var><br>
&mdash; Function: double <b>gsl_cdf_tdist_Q</b> (<var>double x, double nu</var>)<var><a name="index-gsl_005fcdf_005ftdist_005fQ-1793"></a></var><br>
&mdash; Function: double <b>gsl_cdf_tdist_Pinv</b> (<var>double P, double nu</var>)<var><a name="index-gsl_005fcdf_005ftdist_005fPinv-1794"></a></var><br>
&mdash; Function: double <b>gsl_cdf_tdist_Qinv</b> (<var>double Q, double nu</var>)<var><a name="index-gsl_005fcdf_005ftdist_005fQinv-1795"></a></var><br>
<blockquote><p>These functions compute the cumulative distribution functions
P(x), Q(x) and their inverses for the t-distribution
with <var>nu</var> degrees of freedom. 
</p></blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>