File: Chebyshev-Approximations.html

package info (click to toggle)
gsl-ref-html 1.15-1
  • links: PTS
  • area: non-free
  • in suites: wheezy
  • size: 4,692 kB
  • sloc: makefile: 33
file content (75 lines) | stat: -rw-r--r-- 4,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
<html lang="en">
<head>
<title>Chebyshev Approximations - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="prev" href="Numerical-Differentiation.html" title="Numerical Differentiation">
<link rel="next" href="Series-Acceleration.html" title="Series Acceleration">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="Chebyshev-Approximations"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="Series-Acceleration.html">Series Acceleration</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="Numerical-Differentiation.html">Numerical Differentiation</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="index.html#Top">Top</a>
<hr>
</div>

<h2 class="chapter">29 Chebyshev Approximations</h2>

<p><a name="index-Chebyshev-series-2292"></a><a name="index-fitting_002c-using-Chebyshev-polynomials-2293"></a><a name="index-interpolation_002c-using-Chebyshev-polynomials-2294"></a>
This chapter describes routines for computing Chebyshev approximations
to univariate functions.  A Chebyshev approximation is a truncation of
the series f(x) = \sum c_n T_n(x), where the Chebyshev
polynomials T_n(x) = \cos(n \arccos x) provide an orthogonal
basis of polynomials on the interval [-1,1] with the weight
function <!-- {$1 / \sqrt{1-x^2}$} -->
1 / \sqrt{1-x^2}.  The first few Chebyshev polynomials are,
T_0(x) = 1, T_1(x) = x, T_2(x) = 2 x^2 - 1. 
For further information see Abramowitz &amp; Stegun, Chapter 22.

   <p>The functions described in this chapter are declared in the header file
<samp><span class="file">gsl_chebyshev.h</span></samp>.

<ul class="menu">
<li><a accesskey="1" href="Chebyshev-Definitions.html">Chebyshev Definitions</a>
<li><a accesskey="2" href="Creation-and-Calculation-of-Chebyshev-Series.html">Creation and Calculation of Chebyshev Series</a>
<li><a accesskey="3" href="Auxiliary-Functions-for-Chebyshev-Series.html">Auxiliary Functions for Chebyshev Series</a>
<li><a accesskey="4" href="Chebyshev-Series-Evaluation.html">Chebyshev Series Evaluation</a>
<li><a accesskey="5" href="Derivatives-and-Integrals.html">Derivatives and Integrals</a>
<li><a accesskey="6" href="Chebyshev-Approximation-Examples.html">Chebyshev Approximation Examples</a>
<li><a accesskey="7" href="Chebyshev-Approximation-References-and-Further-Reading.html">Chebyshev Approximation References and Further Reading</a>
</ul>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>