1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
<html lang="en">
<head>
<title>Complex Generalized Hermitian-Definite Eigensystems - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Eigensystems.html" title="Eigensystems">
<link rel="prev" href="Real-Generalized-Symmetric_002dDefinite-Eigensystems.html" title="Real Generalized Symmetric-Definite Eigensystems">
<link rel="next" href="Real-Generalized-Nonsymmetric-Eigensystems.html" title="Real Generalized Nonsymmetric Eigensystems">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<a name="Complex-Generalized-Hermitian-Definite-Eigensystems"></a>
<a name="Complex-Generalized-Hermitian_002dDefinite-Eigensystems"></a>
<p>
Next: <a rel="next" accesskey="n" href="Real-Generalized-Nonsymmetric-Eigensystems.html">Real Generalized Nonsymmetric Eigensystems</a>,
Previous: <a rel="previous" accesskey="p" href="Real-Generalized-Symmetric_002dDefinite-Eigensystems.html">Real Generalized Symmetric-Definite Eigensystems</a>,
Up: <a rel="up" accesskey="u" href="Eigensystems.html">Eigensystems</a>
<hr>
</div>
<h3 class="section">15.5 Complex Generalized Hermitian-Definite Eigensystems</h3>
<p><a name="index-generalized-hermitian-definite-eigensystems-1440"></a>
The complex generalized hermitian-definite eigenvalue problem is to find
eigenvalues \lambda and eigenvectors x such that
where A and B are hermitian matrices, and B is
positive-definite. Similarly to the real case, this can be reduced
to C y = \lambda y where
<!-- {$C = L^{-1} A L^{-\dagger}$} -->
C = L^{-1} A L^{-H}
is hermitian, and
<!-- {$y = L^{\dagger} x$} -->
y = L^H x. The standard
hermitian eigensolver can be applied to the matrix C.
The resulting eigenvectors are backtransformed to find the
vectors of the original problem. The eigenvalues
of the generalized hermitian-definite eigenproblem are always real.
<div class="defun">
— Function: gsl_eigen_genherm_workspace * <b>gsl_eigen_genherm_alloc</b> (<var>const size_t n</var>)<var><a name="index-gsl_005feigen_005fgenherm_005falloc-1441"></a></var><br>
<blockquote><p><a name="index-gsl_005feigen_005fgenherm_005fworkspace-1442"></a>This function allocates a workspace for computing eigenvalues of
<var>n</var>-by-<var>n</var> complex generalized hermitian-definite eigensystems. The
size of the workspace is O(3n).
</p></blockquote></div>
<div class="defun">
— Function: void <b>gsl_eigen_genherm_free</b> (<var>gsl_eigen_genherm_workspace * w</var>)<var><a name="index-gsl_005feigen_005fgenherm_005ffree-1443"></a></var><br>
<blockquote><p>This function frees the memory associated with the workspace <var>w</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_eigen_genherm</b> (<var>gsl_matrix_complex * A, gsl_matrix_complex * B, gsl_vector * eval, gsl_eigen_genherm_workspace * w</var>)<var><a name="index-gsl_005feigen_005fgenherm-1444"></a></var><br>
<blockquote><p>This function computes the eigenvalues of the complex generalized
hermitian-definite matrix pair (<var>A</var>, <var>B</var>), and stores them
in <var>eval</var>, using the method outlined above. On output, <var>B</var>
contains its Cholesky decomposition and <var>A</var> is destroyed.
</p></blockquote></div>
<div class="defun">
— Function: gsl_eigen_genhermv_workspace * <b>gsl_eigen_genhermv_alloc</b> (<var>const size_t n</var>)<var><a name="index-gsl_005feigen_005fgenhermv_005falloc-1445"></a></var><br>
<blockquote><p><a name="index-gsl_005feigen_005fgenhermv_005fworkspace-1446"></a>This function allocates a workspace for computing eigenvalues and
eigenvectors of <var>n</var>-by-<var>n</var> complex generalized hermitian-definite
eigensystems. The size of the workspace is O(5n).
</p></blockquote></div>
<div class="defun">
— Function: void <b>gsl_eigen_genhermv_free</b> (<var>gsl_eigen_genhermv_workspace * w</var>)<var><a name="index-gsl_005feigen_005fgenhermv_005ffree-1447"></a></var><br>
<blockquote><p>This function frees the memory associated with the workspace <var>w</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_eigen_genhermv</b> (<var>gsl_matrix_complex * A, gsl_matrix_complex * B, gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_genhermv_workspace * w</var>)<var><a name="index-gsl_005feigen_005fgenhermv-1448"></a></var><br>
<blockquote><p>This function computes the eigenvalues and eigenvectors of the complex
generalized hermitian-definite matrix pair (<var>A</var>, <var>B</var>), and
stores them in <var>eval</var> and <var>evec</var> respectively. The computed
eigenvectors are normalized to have unit magnitude. On output,
<var>B</var> contains its Cholesky decomposition and <var>A</var> is destroyed.
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|