File: Discrete-Hankel-Transform-Definition.html

package info (click to toggle)
gsl-ref-html 1.15-1
  • links: PTS
  • area: non-free
  • in suites: wheezy
  • size: 4,692 kB
  • sloc: makefile: 33
file content (85 lines) | stat: -rw-r--r-- 4,293 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
<html lang="en">
<head>
<title>Discrete Hankel Transform Definition - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Discrete-Hankel-Transforms.html" title="Discrete Hankel Transforms">
<link rel="next" href="Discrete-Hankel-Transform-Functions.html" title="Discrete Hankel Transform Functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="Discrete-Hankel-Transform-Definition"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="Discrete-Hankel-Transform-Functions.html">Discrete Hankel Transform Functions</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Discrete-Hankel-Transforms.html">Discrete Hankel Transforms</a>
<hr>
</div>

<h3 class="section">32.1 Definitions</h3>

<p>The discrete Hankel transform acts on a vector of sampled data, where
the samples are assumed to have been taken at points related to the
zeroes of a Bessel function of fixed order; compare this to the case of
the discrete Fourier transform, where samples are taken at points
related to the zeroes of the sine or cosine function.

   <p>Specifically, let f(t) be a function on the unit interval and
<!-- {$j_{\nu,m}$} -->
j_(\nu,m) the m-th zero of the Bessel function
J_\nu(x).  Then the finite \nu-Hankel transform of
f(t) is defined to be the set of numbers g_m given by,
so that,
Suppose that f is band-limited in the sense that
g_m=0 for m &gt; M. Then we have the following
fundamental sampling theorem. 
It is this discrete expression which defines the discrete Hankel
transform. The kernel in the summation above defines the matrix of the
\nu-Hankel transform of size M-1.  The coefficients of
this matrix, being dependent on \nu and M, must be
precomputed and stored; the <code>gsl_dht</code> object encapsulates this
data.  The allocation function <code>gsl_dht_alloc</code> returns a
<code>gsl_dht</code> object which must be properly initialized with
<code>gsl_dht_init</code> before it can be used to perform transforms on data
sample vectors, for fixed \nu and M, using the
<code>gsl_dht_apply</code> function. The implementation allows a scaling of
the fundamental interval, for convenience, so that one can assume the
function is defined on the interval [0,X], rather than the unit
interval.

   <p>Notice that by assumption f(t) vanishes at the endpoints
of the interval, consistent with the inversion formula
and the sampling formula given above. Therefore, this transform
corresponds to an orthogonal expansion in eigenfunctions
of the Dirichlet problem for the Bessel differential equation.

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>