1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
<html lang="en">
<head>
<title>Level 3 GSL BLAS Interface - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="GSL-BLAS-Interface.html" title="GSL BLAS Interface">
<link rel="prev" href="Level-2-GSL-BLAS-Interface.html" title="Level 2 GSL BLAS Interface">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.
(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
pre.display { font-family:inherit }
pre.format { font-family:inherit }
pre.smalldisplay { font-family:inherit; font-size:smaller }
pre.smallformat { font-family:inherit; font-size:smaller }
pre.smallexample { font-size:smaller }
pre.smalllisp { font-size:smaller }
span.sc { font-variant:small-caps }
span.roman { font-family:serif; font-weight:normal; }
span.sansserif { font-family:sans-serif; font-weight:normal; }
--></style>
</head>
<body>
<div class="node">
<a name="Level-3-GSL-BLAS-Interface"></a>
<p>
Previous: <a rel="previous" accesskey="p" href="Level-2-GSL-BLAS-Interface.html">Level 2 GSL BLAS Interface</a>,
Up: <a rel="up" accesskey="u" href="GSL-BLAS-Interface.html">GSL BLAS Interface</a>
<hr>
</div>
<h4 class="subsection">13.1.3 Level 3</h4>
<div class="defun">
— Function: int <b>gsl_blas_sgemm</b> (<var>CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C</var>)<var><a name="index-gsl_005fblas_005fsgemm-1242"></a></var><br>
— Function: int <b>gsl_blas_dgemm</b> (<var>CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C</var>)<var><a name="index-gsl_005fblas_005fdgemm-1243"></a></var><br>
— Function: int <b>gsl_blas_cgemm</b> (<var>CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C</var>)<var><a name="index-gsl_005fblas_005fcgemm-1244"></a></var><br>
— Function: int <b>gsl_blas_zgemm</b> (<var>CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C</var>)<var><a name="index-gsl_005fblas_005fzgemm-1245"></a></var><br>
<blockquote><p><a name="index-GEMM_002c-Level_002d3-BLAS-1246"></a>These functions compute the matrix-matrix product and sum C =
\alpha op(A) op(B) + \beta C where op(A) = A, A^T,
A^H for <var>TransA</var> = <code>CblasNoTrans</code>, <code>CblasTrans</code>,
<code>CblasConjTrans</code> and similarly for the parameter <var>TransB</var>.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_blas_ssymm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C</var>)<var><a name="index-gsl_005fblas_005fssymm-1247"></a></var><br>
— Function: int <b>gsl_blas_dsymm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C</var>)<var><a name="index-gsl_005fblas_005fdsymm-1248"></a></var><br>
— Function: int <b>gsl_blas_csymm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C</var>)<var><a name="index-gsl_005fblas_005fcsymm-1249"></a></var><br>
— Function: int <b>gsl_blas_zsymm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C</var>)<var><a name="index-gsl_005fblas_005fzsymm-1250"></a></var><br>
<blockquote><p><a name="index-SYMM_002c-Level_002d3-BLAS-1251"></a>These functions compute the matrix-matrix product and sum C =
\alpha A B + \beta C for <var>Side</var> is <code>CblasLeft</code> and C =
\alpha B A + \beta C for <var>Side</var> is <code>CblasRight</code>, where the
matrix <var>A</var> is symmetric. When <var>Uplo</var> is <code>CblasUpper</code> then
the upper triangle and diagonal of <var>A</var> are used, and when <var>Uplo</var>
is <code>CblasLower</code> then the lower triangle and diagonal of <var>A</var> are
used.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_blas_chemm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C</var>)<var><a name="index-gsl_005fblas_005fchemm-1252"></a></var><br>
— Function: int <b>gsl_blas_zhemm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C</var>)<var><a name="index-gsl_005fblas_005fzhemm-1253"></a></var><br>
<blockquote><p><a name="index-HEMM_002c-Level_002d3-BLAS-1254"></a>These functions compute the matrix-matrix product and sum C =
\alpha A B + \beta C for <var>Side</var> is <code>CblasLeft</code> and C =
\alpha B A + \beta C for <var>Side</var> is <code>CblasRight</code>, where the
matrix <var>A</var> is hermitian. When <var>Uplo</var> is <code>CblasUpper</code> then
the upper triangle and diagonal of <var>A</var> are used, and when <var>Uplo</var>
is <code>CblasLower</code> then the lower triangle and diagonal of <var>A</var> are
used. The imaginary elements of the diagonal are automatically set to
zero.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_blas_strmm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, float alpha, const gsl_matrix_float * A, gsl_matrix_float * B</var>)<var><a name="index-gsl_005fblas_005fstrmm-1255"></a></var><br>
— Function: int <b>gsl_blas_dtrmm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, const gsl_matrix * A, gsl_matrix * B</var>)<var><a name="index-gsl_005fblas_005fdtrmm-1256"></a></var><br>
— Function: int <b>gsl_blas_ctrmm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, gsl_matrix_complex_float * B</var>)<var><a name="index-gsl_005fblas_005fctrmm-1257"></a></var><br>
— Function: int <b>gsl_blas_ztrmm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex alpha, const gsl_matrix_complex * A, gsl_matrix_complex * B</var>)<var><a name="index-gsl_005fblas_005fztrmm-1258"></a></var><br>
<blockquote><p><a name="index-TRMM_002c-Level_002d3-BLAS-1259"></a>These functions compute the matrix-matrix product B = \alpha op(A)
B for <var>Side</var> is <code>CblasLeft</code> and B = \alpha B op(A) for
<var>Side</var> is <code>CblasRight</code>. The matrix <var>A</var> is triangular and
op(A) = A, A^T, A^H for <var>TransA</var> =
<code>CblasNoTrans</code>, <code>CblasTrans</code>, <code>CblasConjTrans</code>. When
<var>Uplo</var> is <code>CblasUpper</code> then the upper triangle of <var>A</var> is
used, and when <var>Uplo</var> is <code>CblasLower</code> then the lower triangle
of <var>A</var> is used. If <var>Diag</var> is <code>CblasNonUnit</code> then the
diagonal of <var>A</var> is used, but if <var>Diag</var> is <code>CblasUnit</code> then
the diagonal elements of the matrix <var>A</var> are taken as unity and are
not referenced.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_blas_strsm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, float alpha, const gsl_matrix_float * A, gsl_matrix_float * B</var>)<var><a name="index-gsl_005fblas_005fstrsm-1260"></a></var><br>
— Function: int <b>gsl_blas_dtrsm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, const gsl_matrix * A, gsl_matrix * B</var>)<var><a name="index-gsl_005fblas_005fdtrsm-1261"></a></var><br>
— Function: int <b>gsl_blas_ctrsm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, gsl_matrix_complex_float * B</var>)<var><a name="index-gsl_005fblas_005fctrsm-1262"></a></var><br>
— Function: int <b>gsl_blas_ztrsm</b> (<var>CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex alpha, const gsl_matrix_complex * A, gsl_matrix_complex * B</var>)<var><a name="index-gsl_005fblas_005fztrsm-1263"></a></var><br>
<blockquote><p><a name="index-TRSM_002c-Level_002d3-BLAS-1264"></a>These functions compute the inverse-matrix matrix product
B = \alpha op(inv(A))B for <var>Side</var> is
<code>CblasLeft</code> and B = \alpha B op(inv(A)) for
<var>Side</var> is <code>CblasRight</code>. The matrix <var>A</var> is triangular and
op(A) = A, A^T, A^H for <var>TransA</var> =
<code>CblasNoTrans</code>, <code>CblasTrans</code>, <code>CblasConjTrans</code>. When
<var>Uplo</var> is <code>CblasUpper</code> then the upper triangle of <var>A</var> is
used, and when <var>Uplo</var> is <code>CblasLower</code> then the lower triangle
of <var>A</var> is used. If <var>Diag</var> is <code>CblasNonUnit</code> then the
diagonal of <var>A</var> is used, but if <var>Diag</var> is <code>CblasUnit</code> then
the diagonal elements of the matrix <var>A</var> are taken as unity and are
not referenced.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_blas_ssyrk</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_float * A, float beta, gsl_matrix_float * C</var>)<var><a name="index-gsl_005fblas_005fssyrk-1265"></a></var><br>
— Function: int <b>gsl_blas_dsyrk</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix * A, double beta, gsl_matrix * C</var>)<var><a name="index-gsl_005fblas_005fdsyrk-1266"></a></var><br>
— Function: int <b>gsl_blas_csyrk</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_complex_float beta, gsl_matrix_complex_float * C</var>)<var><a name="index-gsl_005fblas_005fcsyrk-1267"></a></var><br>
— Function: int <b>gsl_blas_zsyrk</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_complex beta, gsl_matrix_complex * C</var>)<var><a name="index-gsl_005fblas_005fzsyrk-1268"></a></var><br>
<blockquote><p><a name="index-SYRK_002c-Level_002d3-BLAS-1269"></a>These functions compute a rank-k update of the symmetric matrix <var>C</var>,
C = \alpha A A^T + \beta C when <var>Trans</var> is
<code>CblasNoTrans</code> and C = \alpha A^T A + \beta C when
<var>Trans</var> is <code>CblasTrans</code>. Since the matrix <var>C</var> is symmetric
only its upper half or lower half need to be stored. When <var>Uplo</var> is
<code>CblasUpper</code> then the upper triangle and diagonal of <var>C</var> are
used, and when <var>Uplo</var> is <code>CblasLower</code> then the lower triangle
and diagonal of <var>C</var> are used.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_blas_cherk</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_complex_float * A, float beta, gsl_matrix_complex_float * C</var>)<var><a name="index-gsl_005fblas_005fcherk-1270"></a></var><br>
— Function: int <b>gsl_blas_zherk</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix_complex * A, double beta, gsl_matrix_complex * C</var>)<var><a name="index-gsl_005fblas_005fzherk-1271"></a></var><br>
<blockquote><p><a name="index-HERK_002c-Level_002d3-BLAS-1272"></a>These functions compute a rank-k update of the hermitian matrix <var>C</var>,
C = \alpha A A^H + \beta C when <var>Trans</var> is
<code>CblasNoTrans</code> and C = \alpha A^H A + \beta C when
<var>Trans</var> is <code>CblasConjTrans</code>. Since the matrix <var>C</var> is hermitian
only its upper half or lower half need to be stored. When <var>Uplo</var> is
<code>CblasUpper</code> then the upper triangle and diagonal of <var>C</var> are
used, and when <var>Uplo</var> is <code>CblasLower</code> then the lower triangle
and diagonal of <var>C</var> are used. The imaginary elements of the
diagonal are automatically set to zero.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_blas_ssyr2k</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C</var>)<var><a name="index-gsl_005fblas_005fssyr2k-1273"></a></var><br>
— Function: int <b>gsl_blas_dsyr2k</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C</var>)<var><a name="index-gsl_005fblas_005fdsyr2k-1274"></a></var><br>
— Function: int <b>gsl_blas_csyr2k</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C</var>)<var><a name="index-gsl_005fblas_005fcsyr2k-1275"></a></var><br>
— Function: int <b>gsl_blas_zsyr2k</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C</var>)<var><a name="index-gsl_005fblas_005fzsyr2k-1276"></a></var><br>
<blockquote><p><a name="index-SYR2K_002c-Level_002d3-BLAS-1277"></a>These functions compute a rank-2k update of the symmetric matrix <var>C</var>,
C = \alpha A B^T + \alpha B A^T + \beta C when <var>Trans</var> is
<code>CblasNoTrans</code> and C = \alpha A^T B + \alpha B^T A + \beta C when
<var>Trans</var> is <code>CblasTrans</code>. Since the matrix <var>C</var> is symmetric
only its upper half or lower half need to be stored. When <var>Uplo</var> is
<code>CblasUpper</code> then the upper triangle and diagonal of <var>C</var> are
used, and when <var>Uplo</var> is <code>CblasLower</code> then the lower triangle
and diagonal of <var>C</var> are used.
</p></blockquote></div>
<div class="defun">
— Function: int <b>gsl_blas_cher2k</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, float beta, gsl_matrix_complex_float * C</var>)<var><a name="index-gsl_005fblas_005fcher2k-1278"></a></var><br>
— Function: int <b>gsl_blas_zher2k</b> (<var>CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, double beta, gsl_matrix_complex * C</var>)<var><a name="index-gsl_005fblas_005fzher2k-1279"></a></var><br>
<blockquote><p><a name="index-HER2K_002c-Level_002d3-BLAS-1280"></a>These functions compute a rank-2k update of the hermitian matrix <var>C</var>,
C = \alpha A B^H + \alpha^* B A^H + \beta C when <var>Trans</var> is
<code>CblasNoTrans</code> and C = \alpha A^H B + \alpha^* B^H A + \beta C when
<var>Trans</var> is <code>CblasConjTrans</code>. Since the matrix <var>C</var> is hermitian
only its upper half or lower half need to be stored. When <var>Uplo</var> is
<code>CblasUpper</code> then the upper triangle and diagonal of <var>C</var> are
used, and when <var>Uplo</var> is <code>CblasLower</code> then the lower triangle
and diagonal of <var>C</var> are used. The imaginary elements of the
diagonal are automatically set to zero.
</p></blockquote></div>
<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>
|