File: QAWC-adaptive-integration-for-Cauchy-principal-values.html

package info (click to toggle)
gsl-ref-html 1.15-1
  • links: PTS
  • area: non-free
  • in suites: wheezy
  • size: 4,692 kB
  • sloc: makefile: 33
file content (69 lines) | stat: -rw-r--r-- 3,905 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
<html lang="en">
<head>
<title>QAWC adaptive integration for Cauchy principal values - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Numerical-Integration.html" title="Numerical Integration">
<link rel="prev" href="QAGI-adaptive-integration-on-infinite-intervals.html" title="QAGI adaptive integration on infinite intervals">
<link rel="next" href="QAWS-adaptive-integration-for-singular-functions.html" title="QAWS adaptive integration for singular functions">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="QAWC-adaptive-integration-for-Cauchy-principal-values"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="QAWS-adaptive-integration-for-singular-functions.html">QAWS adaptive integration for singular functions</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="QAGI-adaptive-integration-on-infinite-intervals.html">QAGI adaptive integration on infinite intervals</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Numerical-Integration.html">Numerical Integration</a>
<hr>
</div>

<h3 class="section">17.7 QAWC adaptive integration for Cauchy principal values</h3>

<p><a name="index-QAWC-quadrature-algorithm-1543"></a><a name="index-Cauchy-principal-value_002c-by-numerical-quadrature-1544"></a>

<div class="defun">
&mdash; Function: int <b>gsl_integration_qawc</b> (<var>gsl_function * f, double a, double b, double c, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr</var>)<var><a name="index-gsl_005fintegration_005fqawc-1545"></a></var><br>
<blockquote>
        <p>This function computes the Cauchy principal value of the integral of
f over (a,b), with a singularity at <var>c</var>,
     The adaptive bisection algorithm of QAG is used, with modifications to
ensure that subdivisions do not occur at the singular point x = c. 
When a subinterval contains the point x = c or is close to
it then a special 25-point modified Clenshaw-Curtis rule is used to control
the singularity.  Further away from the
singularity the algorithm uses an ordinary 15-point Gauss-Kronrod
integration rule.

        </blockquote></div>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>