File: Random-Number-Distribution-Introduction.html

package info (click to toggle)
gsl-ref-html 1.15-1
  • links: PTS
  • area: non-free
  • in suites: wheezy
  • size: 4,692 kB
  • sloc: makefile: 33
file content (90 lines) | stat: -rw-r--r-- 4,084 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
<html lang="en">
<head>
<title>Random Number Distribution Introduction - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="next" href="The-Gaussian-Distribution.html" title="The Gaussian Distribution">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="Random-Number-Distribution-Introduction"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="The-Gaussian-Distribution.html">The Gaussian Distribution</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>

<h3 class="section">20.1 Introduction</h3>

<p>Continuous random number distributions are defined by a probability
density function, p(x), such that the probability of x
occurring in the infinitesimal range x to x+dx is <!-- {$p\,dx$} -->
p dx.

   <p>The cumulative distribution function for the lower tail P(x) is
defined by the integral,
and gives the probability of a variate taking a value less than x.

   <p>The cumulative distribution function for the upper tail Q(x) is
defined by the integral,
and gives the probability of a variate taking a value greater than x.

   <p>The upper and lower cumulative distribution functions are related by
P(x) + Q(x) = 1 and satisfy <!-- {$0 \le P(x) \le 1$} -->
0 &lt;= P(x) &lt;= 1, <!-- {$0 \le Q(x) \le 1$} -->
0 &lt;= Q(x) &lt;= 1.

   <p>The inverse cumulative distributions, <!-- {$x=P^{-1}(P)$} -->
x=P^{-1}(P) and <!-- {$x=Q^{-1}(Q)$} -->
x=Q^{-1}(Q) give the values of x
which correspond to a specific value of P or Q. 
They can be used to find confidence limits from probability values.

   <p>For discrete distributions the probability of sampling the integer
value k is given by p(k), where \sum_k p(k) = 1. 
The cumulative distribution for the lower tail P(k) of a
discrete distribution is defined as,
where the sum is over the allowed range of the distribution less than
or equal to k.

   <p>The cumulative distribution for the upper tail of a discrete
distribution Q(k) is defined as
giving the sum of probabilities for all values greater than k. 
These two definitions satisfy the identity P(k)+Q(k)=1.

   <p>If the range of the distribution is 1 to n inclusive then
P(n)=1, Q(n)=0 while P(1) = p(1),
Q(1)=1-p(1).

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>