File: The-Bivariate-Gaussian-Distribution.html

package info (click to toggle)
gsl-ref-html 1.15-1
  • links: PTS
  • area: non-free
  • in suites: wheezy
  • size: 4,692 kB
  • sloc: makefile: 33
file content (75 lines) | stat: -rw-r--r-- 4,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
<html lang="en">
<head>
<title>The Bivariate Gaussian Distribution - GNU Scientific Library -- Reference Manual</title>
<meta http-equiv="Content-Type" content="text/html">
<meta name="description" content="GNU Scientific Library -- Reference Manual">
<meta name="generator" content="makeinfo 4.13">
<link title="Top" rel="start" href="index.html#Top">
<link rel="up" href="Random-Number-Distributions.html" title="Random Number Distributions">
<link rel="prev" href="The-Gaussian-Tail-Distribution.html" title="The Gaussian Tail Distribution">
<link rel="next" href="The-Exponential-Distribution.html" title="The Exponential Distribution">
<link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
<!--
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``GNU General Public License'' and ``Free Software
Needs Free Documentation'', the Front-Cover text being ``A GNU Manual'',
and with the Back-Cover Text being (a) (see below).  A copy of the
license is included in the section entitled ``GNU Free Documentation
License''.

(a) The Back-Cover Text is: ``You have the freedom to copy and modify this
GNU Manual.''-->
<meta http-equiv="Content-Style-Type" content="text/css">
<style type="text/css"><!--
  pre.display { font-family:inherit }
  pre.format  { font-family:inherit }
  pre.smalldisplay { font-family:inherit; font-size:smaller }
  pre.smallformat  { font-family:inherit; font-size:smaller }
  pre.smallexample { font-size:smaller }
  pre.smalllisp    { font-size:smaller }
  span.sc    { font-variant:small-caps }
  span.roman { font-family:serif; font-weight:normal; } 
  span.sansserif { font-family:sans-serif; font-weight:normal; } 
--></style>
</head>
<body>
<div class="node">
<a name="The-Bivariate-Gaussian-Distribution"></a>
<p>
Next:&nbsp;<a rel="next" accesskey="n" href="The-Exponential-Distribution.html">The Exponential Distribution</a>,
Previous:&nbsp;<a rel="previous" accesskey="p" href="The-Gaussian-Tail-Distribution.html">The Gaussian Tail Distribution</a>,
Up:&nbsp;<a rel="up" accesskey="u" href="Random-Number-Distributions.html">Random Number Distributions</a>
<hr>
</div>

<h3 class="section">20.4 The Bivariate Gaussian Distribution</h3>

<div class="defun">
&mdash; Function: void <b>gsl_ran_bivariate_gaussian</b> (<var>const gsl_rng * r, double sigma_x, double sigma_y, double rho, double * x, double * y</var>)<var><a name="index-gsl_005fran_005fbivariate_005fgaussian-1711"></a></var><br>
<blockquote><p><a name="index-Bivariate-Gaussian-distribution-1712"></a><a name="index-two-dimensional-Gaussian-distribution-1713"></a><a name="index-Gaussian-distribution_002c-bivariate-1714"></a>This function generates a pair of correlated Gaussian variates, with
mean zero, correlation coefficient <var>rho</var> and standard deviations
<var>sigma_x</var> and <var>sigma_y</var> in the x and y directions. 
The probability distribution for bivariate Gaussian random variates is,
     for x,y in the range -\infty to +\infty.  The
correlation coefficient <var>rho</var> should lie between 1 and
-1. 
</p></blockquote></div>

<div class="defun">
&mdash; Function: double <b>gsl_ran_bivariate_gaussian_pdf</b> (<var>double x, double y, double sigma_x, double sigma_y, double rho</var>)<var><a name="index-gsl_005fran_005fbivariate_005fgaussian_005fpdf-1715"></a></var><br>
<blockquote><p>This function computes the probability density p(x,y) at
(<var>x</var>,<var>y</var>) for a bivariate Gaussian distribution with standard
deviations <var>sigma_x</var>, <var>sigma_y</var> and correlation coefficient
<var>rho</var>, using the formula given above. 
</p></blockquote></div>

   <pre class="sp">

</pre>

<hr>The GNU Scientific Library - a free numerical library licensed under the GNU GPL<br>Back to the <a href="/software/gsl/">GNU Scientific Library Homepage</a></body></html>