1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Bidiagonalization</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Bidiagonalization">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Bidiagonalization">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Linear-Algebra.html#Linear-Algebra" rel="up" title="Linear Algebra">
<link href="Householder-Transformations.html#Householder-Transformations" rel="next" title="Householder Transformations">
<link href="Hessenberg_002dTriangular-Decomposition-of-Real-Matrices.html#Hessenberg_002dTriangular-Decomposition-of-Real-Matrices" rel="previous" title="Hessenberg-Triangular Decomposition of Real Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Bidiagonalization"></a>
<div class="header">
<p>
Next: <a href="Householder-Transformations.html#Householder-Transformations" accesskey="n" rel="next">Householder Transformations</a>, Previous: <a href="Hessenberg_002dTriangular-Decomposition-of-Real-Matrices.html#Hessenberg_002dTriangular-Decomposition-of-Real-Matrices" accesskey="p" rel="previous">Hessenberg-Triangular Decomposition of Real Matrices</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Bidiagonalization-1"></a>
<h3 class="section">14.10 Bidiagonalization</h3>
<a name="index-bidiagonalization-of-real-matrices"></a>
<p>A general matrix <em>A</em> can be factorized by similarity
transformations into the form,
where <em>U</em> and <em>V</em> are orthogonal matrices and <em>B</em> is a
<em>N</em>-by-<em>N</em> bidiagonal matrix with non-zero entries only on the
diagonal and superdiagonal. The size of <var>U</var> is <em>M</em>-by-<em>N</em>
and the size of <var>V</var> is <em>N</em>-by-<em>N</em>.
</p>
<dl>
<dt><a name="index-gsl_005flinalg_005fbidiag_005fdecomp"></a>Function: <em>int</em> <strong>gsl_linalg_bidiag_decomp</strong> <em>(gsl_matrix * <var>A</var>, gsl_vector * <var>tau_U</var>, gsl_vector * <var>tau_V</var>)</em></dt>
<dd><p>This function factorizes the <em>M</em>-by-<em>N</em> matrix <var>A</var> into
bidiagonal form <em>U B V^T</em>. The diagonal and superdiagonal of the
matrix <em>B</em> are stored in the diagonal and superdiagonal of <var>A</var>.
The orthogonal matrices <em>U</em> and <var>V</var> are stored as compressed
Householder vectors in the remaining elements of <var>A</var>. The
Householder coefficients are stored in the vectors <var>tau_U</var> and
<var>tau_V</var>. The length of <var>tau_U</var> must equal the number of
elements in the diagonal of <var>A</var> and the length of <var>tau_V</var> should
be one element shorter.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fbidiag_005funpack"></a>Function: <em>int</em> <strong>gsl_linalg_bidiag_unpack</strong> <em>(const gsl_matrix * <var>A</var>, const gsl_vector * <var>tau_U</var>, gsl_matrix * <var>U</var>, const gsl_vector * <var>tau_V</var>, gsl_matrix * <var>V</var>, gsl_vector * <var>diag</var>, gsl_vector * <var>superdiag</var>)</em></dt>
<dd><p>This function unpacks the bidiagonal decomposition of <var>A</var> produced by
<code>gsl_linalg_bidiag_decomp</code>, (<var>A</var>, <var>tau_U</var>, <var>tau_V</var>)
into the separate orthogonal matrices <var>U</var>, <var>V</var> and the diagonal
vector <var>diag</var> and superdiagonal <var>superdiag</var>. Note that <var>U</var>
is stored as a compact <em>M</em>-by-<em>N</em> orthogonal matrix satisfying
<em>U^T U = I</em> for efficiency.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fbidiag_005funpack2"></a>Function: <em>int</em> <strong>gsl_linalg_bidiag_unpack2</strong> <em>(gsl_matrix * <var>A</var>, gsl_vector * <var>tau_U</var>, gsl_vector * <var>tau_V</var>, gsl_matrix * <var>V</var>)</em></dt>
<dd><p>This function unpacks the bidiagonal decomposition of <var>A</var> produced by
<code>gsl_linalg_bidiag_decomp</code>, (<var>A</var>, <var>tau_U</var>, <var>tau_V</var>)
into the separate orthogonal matrices <var>U</var>, <var>V</var> and the diagonal
vector <var>diag</var> and superdiagonal <var>superdiag</var>. The matrix <var>U</var>
is stored in-place in <var>A</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fbidiag_005funpack_005fB"></a>Function: <em>int</em> <strong>gsl_linalg_bidiag_unpack_B</strong> <em>(const gsl_matrix * <var>A</var>, gsl_vector * <var>diag</var>, gsl_vector * <var>superdiag</var>)</em></dt>
<dd><p>This function unpacks the diagonal and superdiagonal of the bidiagonal
decomposition of <var>A</var> from <code>gsl_linalg_bidiag_decomp</code>, into
the diagonal vector <var>diag</var> and superdiagonal vector <var>superdiag</var>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Householder-Transformations.html#Householder-Transformations" accesskey="n" rel="next">Householder Transformations</a>, Previous: <a href="Hessenberg_002dTriangular-Decomposition-of-Real-Matrices.html#Hessenberg_002dTriangular-Decomposition-of-Real-Matrices" accesskey="p" rel="previous">Hessenberg-Triangular Decomposition of Real Matrices</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|