1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Complex arithmetic operators</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Complex arithmetic operators">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Complex arithmetic operators">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Complex-Numbers.html#Complex-Numbers" rel="up" title="Complex Numbers">
<link href="Elementary-Complex-Functions.html#Elementary-Complex-Functions" rel="next" title="Elementary Complex Functions">
<link href="Properties-of-complex-numbers.html#Properties-of-complex-numbers" rel="previous" title="Properties of complex numbers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Complex-arithmetic-operators"></a>
<div class="header">
<p>
Next: <a href="Elementary-Complex-Functions.html#Elementary-Complex-Functions" accesskey="n" rel="next">Elementary Complex Functions</a>, Previous: <a href="Properties-of-complex-numbers.html#Properties-of-complex-numbers" accesskey="p" rel="previous">Properties of complex numbers</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Complex-arithmetic-operators-1"></a>
<h3 class="section">5.3 Complex arithmetic operators</h3>
<a name="index-complex-arithmetic"></a>
<dl>
<dt><a name="index-gsl_005fcomplex_005fadd"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_add</strong> <em>(gsl_complex <var>a</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the sum of the complex numbers <var>a</var> and
<var>b</var>, <em>z=a+b</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fsub"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sub</strong> <em>(gsl_complex <var>a</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the difference of the complex numbers <var>a</var> and
<var>b</var>, <em>z=a-b</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fmul"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_mul</strong> <em>(gsl_complex <var>a</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the product of the complex numbers <var>a</var> and
<var>b</var>, <em>z=ab</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fdiv"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_div</strong> <em>(gsl_complex <var>a</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the quotient of the complex numbers <var>a</var> and
<var>b</var>, <em>z=a/b</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fadd_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_add_real</strong> <em>(gsl_complex <var>a</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the sum of the complex number <var>a</var> and the
real number <var>x</var>, <em>z=a+x</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fsub_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sub_real</strong> <em>(gsl_complex <var>a</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the difference of the complex number <var>a</var> and the
real number <var>x</var>, <em>z=a-x</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fmul_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_mul_real</strong> <em>(gsl_complex <var>a</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the product of the complex number <var>a</var> and the
real number <var>x</var>, <em>z=ax</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fdiv_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_div_real</strong> <em>(gsl_complex <var>a</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the quotient of the complex number <var>a</var> and the
real number <var>x</var>, <em>z=a/x</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fadd_005fimag"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_add_imag</strong> <em>(gsl_complex <var>a</var>, double <var>y</var>)</em></dt>
<dd><p>This function returns the sum of the complex number <var>a</var> and the
imaginary number <em>i</em><var>y</var>, <em>z=a+iy</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fsub_005fimag"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sub_imag</strong> <em>(gsl_complex <var>a</var>, double <var>y</var>)</em></dt>
<dd><p>This function returns the difference of the complex number <var>a</var> and the
imaginary number <em>i</em><var>y</var>, <em>z=a-iy</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fmul_005fimag"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_mul_imag</strong> <em>(gsl_complex <var>a</var>, double <var>y</var>)</em></dt>
<dd><p>This function returns the product of the complex number <var>a</var> and the
imaginary number <em>i</em><var>y</var>, <em>z=a*(iy)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fdiv_005fimag"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_div_imag</strong> <em>(gsl_complex <var>a</var>, double <var>y</var>)</em></dt>
<dd><p>This function returns the quotient of the complex number <var>a</var> and the
imaginary number <em>i</em><var>y</var>, <em>z=a/(iy)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fconjugate"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_conjugate</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><a name="index-conjugate-of-complex-number"></a>
<p>This function returns the complex conjugate of the complex number
<var>z</var>, <em>z^* = x - i y</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005finverse"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_inverse</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the inverse, or reciprocal, of the complex number
<var>z</var>, <em>1/z = (x - i y)/(x^2 + y^2)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fnegative"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_negative</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the negative of the complex number
<var>z</var>, <em>-z = (-x) + i(-y)</em>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Elementary-Complex-Functions.html#Elementary-Complex-Functions" accesskey="n" rel="next">Elementary Complex Functions</a>, Previous: <a href="Properties-of-complex-numbers.html#Properties-of-complex-numbers" accesskey="p" rel="previous">Properties of complex numbers</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|