1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  
     | 
    
      <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts.  A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Coulomb Wave Functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Coulomb Wave Functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Coulomb Wave Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Coulomb-Functions.html#Coulomb-Functions" rel="up" title="Coulomb Functions">
<link href="Coulomb-Wave-Function-Normalization-Constant.html#Coulomb-Wave-Function-Normalization-Constant" rel="next" title="Coulomb Wave Function Normalization Constant">
<link href="Normalized-Hydrogenic-Bound-States.html#Normalized-Hydrogenic-Bound-States" rel="previous" title="Normalized Hydrogenic Bound States">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Coulomb-Wave-Functions"></a>
<div class="header">
<p>
Next: <a href="Coulomb-Wave-Function-Normalization-Constant.html#Coulomb-Wave-Function-Normalization-Constant" accesskey="n" rel="next">Coulomb Wave Function Normalization Constant</a>, Previous: <a href="Normalized-Hydrogenic-Bound-States.html#Normalized-Hydrogenic-Bound-States" accesskey="p" rel="previous">Normalized Hydrogenic Bound States</a>, Up: <a href="Coulomb-Functions.html#Coulomb-Functions" accesskey="u" rel="up">Coulomb Functions</a>   [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Coulomb-Wave-Functions-1"></a>
<h4 class="subsection">7.7.2 Coulomb Wave Functions</h4>
<p>The Coulomb wave functions <em>F_L(\eta,x)</em>, <em>G_L(\eta,x)</em> are
described in Abramowitz & Stegun, Chapter 14.  Because there can be a
large dynamic range of values for these functions, overflows are handled
gracefully.  If an overflow occurs, <code>GSL_EOVRFLW</code> is signalled and
exponent(s) are returned through the modifiable parameters <var>exp_F</var>,
<var>exp_G</var>. The full solution can be reconstructed from the following
relations,
</p>
<dl>
<dt><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fFG_005fe"></a>Function: <em>int</em> <strong>gsl_sf_coulomb_wave_FG_e</strong> <em>(double <var>eta</var>, double <var>x</var>, double <var>L_F</var>, int <var>k</var>, gsl_sf_result * <var>F</var>, gsl_sf_result * <var>Fp</var>, gsl_sf_result * <var>G</var>, gsl_sf_result * <var>Gp</var>, double * <var>exp_F</var>, double * <var>exp_G</var>)</em></dt>
<dd><p>This function computes the Coulomb wave functions <em>F_L(\eta,x)</em>,
<em>G_{L-k}(\eta,x)</em> and their derivatives 
<em>F'_L(\eta,x)</em>, 
<em>G'_{L-k}(\eta,x)</em>
with respect to <em>x</em>.  The parameters are restricted to <em>L,
L-k > -1/2</em>, <em>x > 0</em> and integer <em>k</em>.  Note that <em>L</em>
itself is not restricted to being an integer. The results are stored in
the parameters <var>F</var>, <var>G</var> for the function values and <var>Fp</var>,
<var>Gp</var> for the derivative values.  If an overflow occurs,
<code>GSL_EOVRFLW</code> is returned and scaling exponents are stored in
the modifiable parameters <var>exp_F</var>, <var>exp_G</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fF_005farray"></a>Function: <em>int</em> <strong>gsl_sf_coulomb_wave_F_array</strong> <em>(double <var>L_min</var>, int <var>kmax</var>, double <var>eta</var>, double <var>x</var>, double <var>fc_array</var>[], double * <var>F_exponent</var>)</em></dt>
<dd><p>This function computes the Coulomb wave function <em>F_L(\eta,x)</em> for
<em>L = Lmin \dots Lmin + kmax</em>, storing the results in <var>fc_array</var>.
In the case of overflow the exponent is stored in <var>F_exponent</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fFG_005farray"></a>Function: <em>int</em> <strong>gsl_sf_coulomb_wave_FG_array</strong> <em>(double <var>L_min</var>, int <var>kmax</var>, double <var>eta</var>, double <var>x</var>, double <var>fc_array</var>[], double <var>gc_array</var>[], double * <var>F_exponent</var>, double * <var>G_exponent</var>)</em></dt>
<dd><p>This function computes the functions <em>F_L(\eta,x)</em>,
<em>G_L(\eta,x)</em> for <em>L = Lmin \dots Lmin + kmax</em> storing the
results in <var>fc_array</var> and <var>gc_array</var>.  In the case of overflow the
exponents are stored in <var>F_exponent</var> and <var>G_exponent</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fFGp_005farray"></a>Function: <em>int</em> <strong>gsl_sf_coulomb_wave_FGp_array</strong> <em>(double <var>L_min</var>, int <var>kmax</var>, double <var>eta</var>, double <var>x</var>, double <var>fc_array</var>[], double <var>fcp_array</var>[], double <var>gc_array</var>[], double <var>gcp_array</var>[], double * <var>F_exponent</var>, double * <var>G_exponent</var>)</em></dt>
<dd><p>This function computes the functions <em>F_L(\eta,x)</em>,
<em>G_L(\eta,x)</em> and their derivatives <em>F'_L(\eta,x)</em>,
<em>G'_L(\eta,x)</em> for <em>L = Lmin \dots Lmin + kmax</em> storing the
results in <var>fc_array</var>, <var>gc_array</var>, <var>fcp_array</var> and <var>gcp_array</var>.
In the case of overflow the exponents are stored in <var>F_exponent</var> 
and <var>G_exponent</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fcoulomb_005fwave_005fsphF_005farray"></a>Function: <em>int</em> <strong>gsl_sf_coulomb_wave_sphF_array</strong> <em>(double <var>L_min</var>, int <var>kmax</var>, double <var>eta</var>, double <var>x</var>, double <var>fc_array</var>[], double <var>F_exponent</var>[])</em></dt>
<dd><p>This function computes the Coulomb wave function divided by the argument
<em>F_L(\eta, x)/x</em> for <em>L = Lmin \dots Lmin + kmax</em>, storing the
results in <var>fc_array</var>.  In the case of overflow the exponent is
stored in <var>F_exponent</var>. This function reduces to spherical Bessel
functions in the limit <em>\eta \to 0</em>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Coulomb-Wave-Function-Normalization-Constant.html#Coulomb-Wave-Function-Normalization-Constant" accesskey="n" rel="next">Coulomb Wave Function Normalization Constant</a>, Previous: <a href="Normalized-Hydrogenic-Bound-States.html#Normalized-Hydrogenic-Bound-States" accesskey="p" rel="previous">Normalized Hydrogenic Bound States</a>, Up: <a href="Coulomb-Functions.html#Coulomb-Functions" accesskey="u" rel="up">Coulomb Functions</a>   [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
 
     |