File: Elementary-Complex-Functions.html

package info (click to toggle)
gsl-ref-html 1.16-1
  • links: PTS
  • area: non-free
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 5,816 kB
  • ctags: 4,130
  • sloc: makefile: 35
file content (130 lines) | stat: -rw-r--r-- 6,449 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts.  A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Elementary Complex Functions</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Elementary Complex Functions">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Elementary Complex Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Complex-Numbers.html#Complex-Numbers" rel="up" title="Complex Numbers">
<link href="Complex-Trigonometric-Functions.html#Complex-Trigonometric-Functions" rel="next" title="Complex Trigonometric Functions">
<link href="Complex-arithmetic-operators.html#Complex-arithmetic-operators" rel="previous" title="Complex arithmetic operators">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Elementary-Complex-Functions"></a>
<div class="header">
<p>
Next: <a href="Complex-Trigonometric-Functions.html#Complex-Trigonometric-Functions" accesskey="n" rel="next">Complex Trigonometric Functions</a>, Previous: <a href="Complex-arithmetic-operators.html#Complex-arithmetic-operators" accesskey="p" rel="previous">Complex arithmetic operators</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Elementary-Complex-Functions-1"></a>
<h3 class="section">5.4 Elementary Complex Functions</h3>

<dl>
<dt><a name="index-gsl_005fcomplex_005fsqrt"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sqrt</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><a name="index-square-root-of-complex-number"></a>
<p>This function returns the square root of the complex number <var>z</var>,
<em>\sqrt z</em>. The branch cut is the negative real axis. The result
always lies in the right half of the complex plane.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fsqrt_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sqrt_real</strong> <em>(double <var>x</var>)</em></dt>
<dd><p>This function returns the complex square root of the real number
<var>x</var>, where <var>x</var> may be negative.
</p></dd></dl>


<dl>
<dt><a name="index-gsl_005fcomplex_005fpow"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_pow</strong> <em>(gsl_complex <var>z</var>, gsl_complex <var>a</var>)</em></dt>
<dd><a name="index-power-of-complex-number"></a>
<a name="index-exponentiation-of-complex-number"></a>
<p>The function returns the complex number <var>z</var> raised to the complex
power <var>a</var>, <em>z^a</em>. This is computed as <em>\exp(\log(z)*a)</em>
using complex logarithms and complex exponentials.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fpow_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_pow_real</strong> <em>(gsl_complex <var>z</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the complex number <var>z</var> raised to the real
power <var>x</var>, <em>z^x</em>.
</p></dd></dl>


<dl>
<dt><a name="index-gsl_005fcomplex_005fexp"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_exp</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex exponential of the complex number
<var>z</var>, <em>\exp(z)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005flog"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_log</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><a name="index-logarithm-of-complex-number"></a>
<p>This function returns the complex natural logarithm (base <em>e</em>) of
the complex number <var>z</var>, <em>\log(z)</em>.  The branch cut is the
negative real axis. 
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005flog10"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_log10</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex base-10 logarithm of
the complex number <var>z</var>, <em>\log_10 (z)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005flog_005fb"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_log_b</strong> <em>(gsl_complex <var>z</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the complex base-<var>b</var> logarithm of the complex
number <var>z</var>, <em>\log_b(z)</em>. This quantity is computed as the ratio
<em>\log(z)/\log(b)</em>.
</p></dd></dl>





</body>
</html>