1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Evaluation of B-spline basis functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Evaluation of B-spline basis functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Evaluation of B-spline basis functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Basis-Splines.html#Basis-Splines" rel="up" title="Basis Splines">
<link href="Evaluation-of-B_002dspline-basis-function-derivatives.html#Evaluation-of-B_002dspline-basis-function-derivatives" rel="next" title="Evaluation of B-spline basis function derivatives">
<link href="Constructing-the-knots-vector.html#Constructing-the-knots-vector" rel="previous" title="Constructing the knots vector">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Evaluation-of-B_002dspline-basis-functions"></a>
<div class="header">
<p>
Next: <a href="Evaluation-of-B_002dspline-basis-function-derivatives.html#Evaluation-of-B_002dspline-basis-function-derivatives" accesskey="n" rel="next">Evaluation of B-spline basis function derivatives</a>, Previous: <a href="Constructing-the-knots-vector.html#Constructing-the-knots-vector" accesskey="p" rel="previous">Constructing the knots vector</a>, Up: <a href="Basis-Splines.html#Basis-Splines" accesskey="u" rel="up">Basis Splines</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Evaluation-of-B_002dsplines"></a>
<h3 class="section">39.4 Evaluation of B-splines</h3>
<a name="index-basis-splines_002c-evaluation"></a>
<dl>
<dt><a name="index-gsl_005fbspline_005feval"></a>Function: <em>int</em> <strong>gsl_bspline_eval</strong> <em>(const double <var>x</var>, gsl_vector * <var>B</var>, gsl_bspline_workspace * <var>w</var>)</em></dt>
<dd><p>This function evaluates all B-spline basis functions at the position
<var>x</var> and stores them in the vector <var>B</var>, so that the <em>i</em>-th element
is <em>B_i(x)</em>. The vector <var>B</var> must be of length
<em>n = nbreak + k - 2</em>. This value may also be obtained by calling
<code>gsl_bspline_ncoeffs</code>.
Computing all the basis functions at once is more efficient than
computing them individually, due to the nature of the defining
recurrence relation.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fbspline_005feval_005fnonzero"></a>Function: <em>int</em> <strong>gsl_bspline_eval_nonzero</strong> <em>(const double <var>x</var>, gsl_vector * <var>Bk</var>, size_t * <var>istart</var>, size_t * <var>iend</var>, gsl_bspline_workspace * <var>w</var>)</em></dt>
<dd><p>This function evaluates all potentially nonzero B-spline basis
functions at the position <var>x</var> and stores them in the vector <var>Bk</var>, so
that the <em>i</em>-th element is <em>B_(istart+i)(x)</em>.
The last element of <var>Bk</var> is <em>B_(iend)(x)</em>. The vector <var>Bk</var> must be
of length <em>k</em>. By returning only the nonzero basis functions,
this function
allows quantities involving linear combinations of the <em>B_i(x)</em>
to be computed without unnecessary terms
(such linear combinations occur, for example,
when evaluating an interpolated function).
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fbspline_005fncoeffs"></a>Function: <em>size_t</em> <strong>gsl_bspline_ncoeffs</strong> <em>(gsl_bspline_workspace * <var>w</var>)</em></dt>
<dd><p>This function returns the number of B-spline coefficients given by
<em>n = nbreak + k - 2</em>.
</p></dd></dl>
</body>
</html>
|