1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Example programs for Nonlinear Least-Squares Fitting</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Example programs for Nonlinear Least-Squares Fitting">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Example programs for Nonlinear Least-Squares Fitting">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Nonlinear-Least_002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting" rel="up" title="Nonlinear Least-Squares Fitting">
<link href="References-and-Further-Reading-for-Nonlinear-Least_002dSquares-Fitting.html#References-and-Further-Reading-for-Nonlinear-Least_002dSquares-Fitting" rel="next" title="References and Further Reading for Nonlinear Least-Squares Fitting">
<link href="Computing-the-covariance-matrix-of-best-fit-parameters.html#Computing-the-covariance-matrix-of-best-fit-parameters" rel="previous" title="Computing the covariance matrix of best fit parameters">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Example-programs-for-Nonlinear-Least_002dSquares-Fitting"></a>
<div class="header">
<p>
Next: <a href="References-and-Further-Reading-for-Nonlinear-Least_002dSquares-Fitting.html#References-and-Further-Reading-for-Nonlinear-Least_002dSquares-Fitting" accesskey="n" rel="next">References and Further Reading for Nonlinear Least-Squares Fitting</a>, Previous: <a href="Computing-the-covariance-matrix-of-best-fit-parameters.html#Computing-the-covariance-matrix-of-best-fit-parameters" accesskey="p" rel="previous">Computing the covariance matrix of best fit parameters</a>, Up: <a href="Nonlinear-Least_002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting" accesskey="u" rel="up">Nonlinear Least-Squares Fitting</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Examples-29"></a>
<h3 class="section">38.11 Examples</h3>
<p>The following example program fits a weighted exponential model with
background to experimental data, <em>Y = A \exp(-\lambda t) + b</em>. The
first part of the program sets up the functions <code>expb_f</code> and
<code>expb_df</code> to calculate the model and its Jacobian. The appropriate
fitting function is given by,
where we have chosen <em>t_i = i</em>. The Jacobian matrix <em>J</em> is
the derivative of these functions with respect to the three parameters
(<em>A</em>, <em>\lambda</em>, <em>b</em>). It is given by,
where <em>x_0 = A</em>, <em>x_1 = \lambda</em> and <em>x_2 = b</em>.
</p>
<div class="example">
<pre class="verbatim">/* expfit.c -- model functions for exponential + background */
struct data {
size_t n;
double * y;
double * sigma;
};
int
expb_f (const gsl_vector * x, void *data,
gsl_vector * f)
{
size_t n = ((struct data *)data)->n;
double *y = ((struct data *)data)->y;
double *sigma = ((struct data *) data)->sigma;
double A = gsl_vector_get (x, 0);
double lambda = gsl_vector_get (x, 1);
double b = gsl_vector_get (x, 2);
size_t i;
for (i = 0; i < n; i++)
{
/* Model Yi = A * exp(-lambda * i) + b */
double t = i;
double Yi = A * exp (-lambda * t) + b;
gsl_vector_set (f, i, (Yi - y[i])/sigma[i]);
}
return GSL_SUCCESS;
}
int
expb_df (const gsl_vector * x, void *data,
gsl_matrix * J)
{
size_t n = ((struct data *)data)->n;
double *sigma = ((struct data *) data)->sigma;
double A = gsl_vector_get (x, 0);
double lambda = gsl_vector_get (x, 1);
size_t i;
for (i = 0; i < n; i++)
{
/* Jacobian matrix J(i,j) = dfi / dxj, */
/* where fi = (Yi - yi)/sigma[i], */
/* Yi = A * exp(-lambda * i) + b */
/* and the xj are the parameters (A,lambda,b) */
double t = i;
double s = sigma[i];
double e = exp(-lambda * t);
gsl_matrix_set (J, i, 0, e/s);
gsl_matrix_set (J, i, 1, -t * A * e/s);
gsl_matrix_set (J, i, 2, 1/s);
}
return GSL_SUCCESS;
}
int
expb_fdf (const gsl_vector * x, void *data,
gsl_vector * f, gsl_matrix * J)
{
expb_f (x, data, f);
expb_df (x, data, J);
return GSL_SUCCESS;
}
</pre></div>
<p>The main part of the program sets up a Levenberg-Marquardt solver and
some simulated random data. The data uses the known parameters
(1.0,5.0,0.1) combined with Gaussian noise (standard deviation = 0.1)
over a range of 40 timesteps. The initial guess for the parameters is
chosen as (0.0, 1.0, 0.0).
</p>
<div class="example">
<pre class="verbatim">#include <stdlib.h>
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_multifit_nlin.h>
#include "expfit.c"
#define N 40
void print_state (size_t iter, gsl_multifit_fdfsolver * s);
int
main (void)
{
const gsl_multifit_fdfsolver_type *T;
gsl_multifit_fdfsolver *s;
int status;
unsigned int i, iter = 0;
const size_t n = N;
const size_t p = 3;
gsl_matrix *covar = gsl_matrix_alloc (p, p);
double y[N], sigma[N];
struct data d = { n, y, sigma};
gsl_multifit_function_fdf f;
double x_init[3] = { 1.0, 0.0, 0.0 };
gsl_vector_view x = gsl_vector_view_array (x_init, p);
const gsl_rng_type * type;
gsl_rng * r;
gsl_rng_env_setup();
type = gsl_rng_default;
r = gsl_rng_alloc (type);
f.f = &expb_f;
f.df = &expb_df;
f.fdf = &expb_fdf;
f.n = n;
f.p = p;
f.params = &d;
/* This is the data to be fitted */
for (i = 0; i < n; i++)
{
double t = i;
y[i] = 1.0 + 5 * exp (-0.1 * t)
+ gsl_ran_gaussian (r, 0.1);
sigma[i] = 0.1;
printf ("data: %u %g %g\n", i, y[i], sigma[i]);
};
T = gsl_multifit_fdfsolver_lmsder;
s = gsl_multifit_fdfsolver_alloc (T, n, p);
gsl_multifit_fdfsolver_set (s, &f, &x.vector);
print_state (iter, s);
do
{
iter++;
status = gsl_multifit_fdfsolver_iterate (s);
printf ("status = %s\n", gsl_strerror (status));
print_state (iter, s);
if (status)
break;
status = gsl_multifit_test_delta (s->dx, s->x,
1e-4, 1e-4);
}
while (status == GSL_CONTINUE && iter < 500);
gsl_multifit_covar (s->J, 0.0, covar);
#define FIT(i) gsl_vector_get(s->x, i)
#define ERR(i) sqrt(gsl_matrix_get(covar,i,i))
{
double chi = gsl_blas_dnrm2(s->f);
double dof = n - p;
double c = GSL_MAX_DBL(1, chi / sqrt(dof));
printf("chisq/dof = %g\n", pow(chi, 2.0) / dof);
printf ("A = %.5f +/- %.5f\n", FIT(0), c*ERR(0));
printf ("lambda = %.5f +/- %.5f\n", FIT(1), c*ERR(1));
printf ("b = %.5f +/- %.5f\n", FIT(2), c*ERR(2));
}
printf ("status = %s\n", gsl_strerror (status));
gsl_multifit_fdfsolver_free (s);
gsl_matrix_free (covar);
gsl_rng_free (r);
return 0;
}
void
print_state (size_t iter, gsl_multifit_fdfsolver * s)
{
printf ("iter: %3u x = % 15.8f % 15.8f % 15.8f "
"|f(x)| = %g\n",
iter,
gsl_vector_get (s->x, 0),
gsl_vector_get (s->x, 1),
gsl_vector_get (s->x, 2),
gsl_blas_dnrm2 (s->f));
}
</pre></div>
<p>The iteration terminates when the change in x is smaller than 0.0001, as
both an absolute and relative change. Here are the results of running
the program:
</p>
<div class="smallexample">
<pre class="smallexample">iter: 0 x=1.00000000 0.00000000 0.00000000 |f(x)|=117.349
status=success
iter: 1 x=1.64659312 0.01814772 0.64659312 |f(x)|=76.4578
status=success
iter: 2 x=2.85876037 0.08092095 1.44796363 |f(x)|=37.6838
status=success
iter: 3 x=4.94899512 0.11942928 1.09457665 |f(x)|=9.58079
status=success
iter: 4 x=5.02175572 0.10287787 1.03388354 |f(x)|=5.63049
status=success
iter: 5 x=5.04520433 0.10405523 1.01941607 |f(x)|=5.44398
status=success
iter: 6 x=5.04535782 0.10404906 1.01924871 |f(x)|=5.44397
chisq/dof = 0.800996
A = 5.04536 +/- 0.06028
lambda = 0.10405 +/- 0.00316
b = 1.01925 +/- 0.03782
status = success
</pre></div>
<p>The approximate values of the parameters are found correctly, and the
chi-squared value indicates a good fit (the chi-squared per degree of
freedom is approximately 1). In this case the errors on the parameters
can be estimated from the square roots of the diagonal elements of the
covariance matrix.
</p>
<p>If the chi-squared value shows a poor fit (i.e. <em>chi^2/dof >> 1</em>) then the error estimates obtained from the
covariance matrix will be too small. In the example program the error estimates
are multiplied by <em>\sqrt{\chi^2/dof}</em> in this case, a common way of increasing the
errors for a poor fit. Note that a poor fit will result from the use
an inappropriate model, and the scaled error estimates may then
be outside the range of validity for Gaussian errors.
</p>
<hr>
<div class="header">
<p>
Next: <a href="References-and-Further-Reading-for-Nonlinear-Least_002dSquares-Fitting.html#References-and-Further-Reading-for-Nonlinear-Least_002dSquares-Fitting" accesskey="n" rel="next">References and Further Reading for Nonlinear Least-Squares Fitting</a>, Previous: <a href="Computing-the-covariance-matrix-of-best-fit-parameters.html#Computing-the-covariance-matrix-of-best-fit-parameters" accesskey="p" rel="previous">Computing the covariance matrix of best fit parameters</a>, Up: <a href="Nonlinear-Least_002dSquares-Fitting.html#Nonlinear-Least_002dSquares-Fitting" accesskey="u" rel="up">Nonlinear Least-Squares Fitting</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|