1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Fitting Examples</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Fitting Examples">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Fitting Examples">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Least_002dSquares-Fitting.html#Least_002dSquares-Fitting" rel="up" title="Least-Squares Fitting">
<link href="Fitting-References-and-Further-Reading.html#Fitting-References-and-Further-Reading" rel="next" title="Fitting References and Further Reading">
<link href="Troubleshooting.html#Troubleshooting" rel="previous" title="Troubleshooting">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Fitting-Examples"></a>
<div class="header">
<p>
Next: <a href="Fitting-References-and-Further-Reading.html#Fitting-References-and-Further-Reading" accesskey="n" rel="next">Fitting References and Further Reading</a>, Previous: <a href="Troubleshooting.html#Troubleshooting" accesskey="p" rel="previous">Troubleshooting</a>, Up: <a href="Least_002dSquares-Fitting.html#Least_002dSquares-Fitting" accesskey="u" rel="up">Least-Squares Fitting</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Examples-28"></a>
<h3 class="section">37.7 Examples</h3>
<p>The following program computes a least squares straight-line fit to a
simple dataset, and outputs the best-fit line and its
associated one standard-deviation error bars.
</p>
<div class="example">
<pre class="verbatim">#include <stdio.h>
#include <gsl/gsl_fit.h>
int
main (void)
{
int i, n = 4;
double x[4] = { 1970, 1980, 1990, 2000 };
double y[4] = { 12, 11, 14, 13 };
double w[4] = { 0.1, 0.2, 0.3, 0.4 };
double c0, c1, cov00, cov01, cov11, chisq;
gsl_fit_wlinear (x, 1, w, 1, y, 1, n,
&c0, &c1, &cov00, &cov01, &cov11,
&chisq);
printf ("# best fit: Y = %g + %g X\n", c0, c1);
printf ("# covariance matrix:\n");
printf ("# [ %g, %g\n# %g, %g]\n",
cov00, cov01, cov01, cov11);
printf ("# chisq = %g\n", chisq);
for (i = 0; i < n; i++)
printf ("data: %g %g %g\n",
x[i], y[i], 1/sqrt(w[i]));
printf ("\n");
for (i = -30; i < 130; i++)
{
double xf = x[0] + (i/100.0) * (x[n-1] - x[0]);
double yf, yf_err;
gsl_fit_linear_est (xf,
c0, c1,
cov00, cov01, cov11,
&yf, &yf_err);
printf ("fit: %g %g\n", xf, yf);
printf ("hi : %g %g\n", xf, yf + yf_err);
printf ("lo : %g %g\n", xf, yf - yf_err);
}
return 0;
}
</pre></div>
<p>The following commands extract the data from the output of the program
and display it using the <small>GNU</small> plotutils <code>graph</code> utility,
</p>
<div class="example">
<pre class="example">$ ./demo > tmp
$ more tmp
# best fit: Y = -106.6 + 0.06 X
# covariance matrix:
# [ 39602, -19.9
# -19.9, 0.01]
# chisq = 0.8
$ for n in data fit hi lo ;
do
grep "^$n" tmp | cut -d: -f2 > $n ;
done
$ graph -T X -X x -Y y -y 0 20 -m 0 -S 2 -Ie data
-S 0 -I a -m 1 fit -m 2 hi -m 2 lo
</pre></div>
<p>The next program performs a quadratic fit <em>y = c_0 + c_1 x + c_2
x^2</em> to a weighted dataset using the generalised linear fitting function
<code>gsl_multifit_wlinear</code>. The model matrix <em>X</em> for a quadratic
fit is given by,
where the column of ones corresponds to the constant term <em>c_0</em>.
The two remaining columns corresponds to the terms <em>c_1 x</em> and
<em>c_2 x^2</em>.
</p>
<p>The program reads <var>n</var> lines of data in the format (<var>x</var>, <var>y</var>,
<var>err</var>) where <var>err</var> is the error (standard deviation) in the
value <var>y</var>.
</p>
<div class="example">
<pre class="verbatim">#include <stdio.h>
#include <gsl/gsl_multifit.h>
int
main (int argc, char **argv)
{
int i, n;
double xi, yi, ei, chisq;
gsl_matrix *X, *cov;
gsl_vector *y, *w, *c;
if (argc != 2)
{
fprintf (stderr,"usage: fit n < data\n");
exit (-1);
}
n = atoi (argv[1]);
X = gsl_matrix_alloc (n, 3);
y = gsl_vector_alloc (n);
w = gsl_vector_alloc (n);
c = gsl_vector_alloc (3);
cov = gsl_matrix_alloc (3, 3);
for (i = 0; i < n; i++)
{
int count = fscanf (stdin, "%lg %lg %lg",
&xi, &yi, &ei);
if (count != 3)
{
fprintf (stderr, "error reading file\n");
exit (-1);
}
printf ("%g %g +/- %g\n", xi, yi, ei);
gsl_matrix_set (X, i, 0, 1.0);
gsl_matrix_set (X, i, 1, xi);
gsl_matrix_set (X, i, 2, xi*xi);
gsl_vector_set (y, i, yi);
gsl_vector_set (w, i, 1.0/(ei*ei));
}
{
gsl_multifit_linear_workspace * work
= gsl_multifit_linear_alloc (n, 3);
gsl_multifit_wlinear (X, w, y, c, cov,
&chisq, work);
gsl_multifit_linear_free (work);
}
#define C(i) (gsl_vector_get(c,(i)))
#define COV(i,j) (gsl_matrix_get(cov,(i),(j)))
{
printf ("# best fit: Y = %g + %g X + %g X^2\n",
C(0), C(1), C(2));
printf ("# covariance matrix:\n");
printf ("[ %+.5e, %+.5e, %+.5e \n",
COV(0,0), COV(0,1), COV(0,2));
printf (" %+.5e, %+.5e, %+.5e \n",
COV(1,0), COV(1,1), COV(1,2));
printf (" %+.5e, %+.5e, %+.5e ]\n",
COV(2,0), COV(2,1), COV(2,2));
printf ("# chisq = %g\n", chisq);
}
gsl_matrix_free (X);
gsl_vector_free (y);
gsl_vector_free (w);
gsl_vector_free (c);
gsl_matrix_free (cov);
return 0;
}
</pre></div>
<p>A suitable set of data for fitting can be generated using the following
program. It outputs a set of points with gaussian errors from the curve
<em>y = e^x</em> in the region <em>0 < x < 2</em>.
</p>
<div class="example">
<pre class="verbatim">#include <stdio.h>
#include <math.h>
#include <gsl/gsl_randist.h>
int
main (void)
{
double x;
const gsl_rng_type * T;
gsl_rng * r;
gsl_rng_env_setup ();
T = gsl_rng_default;
r = gsl_rng_alloc (T);
for (x = 0.1; x < 2; x+= 0.1)
{
double y0 = exp (x);
double sigma = 0.1 * y0;
double dy = gsl_ran_gaussian (r, sigma);
printf ("%g %g %g\n", x, y0 + dy, sigma);
}
gsl_rng_free(r);
return 0;
}
</pre></div>
<p>The data can be prepared by running the resulting executable program,
</p>
<div class="example">
<pre class="example">$ GSL_RNG_TYPE=mt19937_1999 ./generate > exp.dat
$ more exp.dat
0.1 0.97935 0.110517
0.2 1.3359 0.12214
0.3 1.52573 0.134986
0.4 1.60318 0.149182
0.5 1.81731 0.164872
0.6 1.92475 0.182212
....
</pre></div>
<p>To fit the data use the previous program, with the number of data points
given as the first argument. In this case there are 19 data points.
</p>
<div class="example">
<pre class="example">$ ./fit 19 < exp.dat
0.1 0.97935 +/- 0.110517
0.2 1.3359 +/- 0.12214
...
# best fit: Y = 1.02318 + 0.956201 X + 0.876796 X^2
# covariance matrix:
[ +1.25612e-02, -3.64387e-02, +1.94389e-02
-3.64387e-02, +1.42339e-01, -8.48761e-02
+1.94389e-02, -8.48761e-02, +5.60243e-02 ]
# chisq = 23.0987
</pre></div>
<p>The parameters of the quadratic fit match the coefficients of the
expansion of <em>e^x</em>, taking into account the errors on the
parameters and the <em>O(x^3)</em> difference between the exponential and
quadratic functions for the larger values of <em>x</em>. The errors on
the parameters are given by the square-root of the corresponding
diagonal elements of the covariance matrix. The chi-squared per degree
of freedom is 1.4, indicating a reasonable fit to the data.
</p>
<p>The next program demonstrates the advantage of robust least squares on
a dataset with outliers. The program generates linear <em>(x,y)</em>
data pairs on the line <em>y = 1.45 x + 3.88</em>, adds some random
noise, and inserts 3 outliers into the dataset. Both the robust
and ordinary least squares (OLS) coefficients are computed for
comparison.
</p>
<div class="example">
<pre class="verbatim">#include <stdio.h>
#include <gsl/gsl_multifit.h>
#include <gsl/gsl_randist.h>
int
dofit(const gsl_multifit_robust_type *T,
const gsl_matrix *X, const gsl_vector *y,
gsl_vector *c, gsl_matrix *cov)
{
int s;
gsl_multifit_robust_workspace * work
= gsl_multifit_robust_alloc (T, X->size1, X->size2);
s = gsl_multifit_robust (X, y, c, cov, work);
gsl_multifit_robust_free (work);
return s;
}
int
main (int argc, char **argv)
{
int i;
size_t n;
const size_t p = 2; /* linear fit */
gsl_matrix *X, *cov;
gsl_vector *x, *y, *c, *c_ols;
const double a = 1.45; /* slope */
const double b = 3.88; /* intercept */
gsl_rng *r;
if (argc != 2)
{
fprintf (stderr,"usage: robfit n\n");
exit (-1);
}
n = atoi (argv[1]);
X = gsl_matrix_alloc (n, p);
x = gsl_vector_alloc (n);
y = gsl_vector_alloc (n);
c = gsl_vector_alloc (p);
c_ols = gsl_vector_alloc (p);
cov = gsl_matrix_alloc (p, p);
r = gsl_rng_alloc(gsl_rng_default);
/* generate linear dataset */
for (i = 0; i < n - 3; i++)
{
double dx = 10.0 / (n - 1.0);
double ei = gsl_rng_uniform(r);
double xi = -5.0 + i * dx;
double yi = a * xi + b;
gsl_vector_set (x, i, xi);
gsl_vector_set (y, i, yi + ei);
}
/* add a few outliers */
gsl_vector_set(x, n - 3, 4.7);
gsl_vector_set(y, n - 3, -8.3);
gsl_vector_set(x, n - 2, 3.5);
gsl_vector_set(y, n - 2, -6.7);
gsl_vector_set(x, n - 1, 4.1);
gsl_vector_set(y, n - 1, -6.0);
/* construct design matrix X for linear fit */
for (i = 0; i < n; ++i)
{
double xi = gsl_vector_get(x, i);
gsl_matrix_set (X, i, 0, 1.0);
gsl_matrix_set (X, i, 1, xi);
}
/* perform robust and OLS fit */
dofit(gsl_multifit_robust_ols, X, y, c_ols, cov);
dofit(gsl_multifit_robust_bisquare, X, y, c, cov);
/* output data and model */
for (i = 0; i < n; ++i)
{
double xi = gsl_vector_get(x, i);
double yi = gsl_vector_get(y, i);
gsl_vector_view v = gsl_matrix_row(X, i);
double y_ols, y_rob, y_err;
gsl_multifit_robust_est(&v.vector, c, cov, &y_rob, &y_err);
gsl_multifit_robust_est(&v.vector, c_ols, cov, &y_ols, &y_err);
printf("%g %g %g %g\n", xi, yi, y_rob, y_ols);
}
#define C(i) (gsl_vector_get(c,(i)))
#define COV(i,j) (gsl_matrix_get(cov,(i),(j)))
{
printf ("# best fit: Y = %g + %g X\n",
C(0), C(1));
printf ("# covariance matrix:\n");
printf ("# [ %+.5e, %+.5e\n",
COV(0,0), COV(0,1));
printf ("# %+.5e, %+.5e\n",
COV(1,0), COV(1,1));
}
gsl_matrix_free (X);
gsl_vector_free (x);
gsl_vector_free (y);
gsl_vector_free (c);
gsl_vector_free (c_ols);
gsl_matrix_free (cov);
gsl_rng_free(r);
return 0;
}
</pre></div>
<p>The output from the program is shown in the following plot.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Fitting-References-and-Further-Reading.html#Fitting-References-and-Further-Reading" accesskey="n" rel="next">Fitting References and Further Reading</a>, Previous: <a href="Troubleshooting.html#Troubleshooting" accesskey="p" rel="previous">Troubleshooting</a>, Up: <a href="Least_002dSquares-Fitting.html#Least_002dSquares-Fitting" accesskey="u" rel="up">Least-Squares Fitting</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|