File: General-Polynomial-Equations.html

package info (click to toggle)
gsl-ref-html 1.16-1
  • links: PTS
  • area: non-free
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 5,816 kB
  • ctags: 4,130
  • sloc: makefile: 35
file content (122 lines) | stat: -rw-r--r-- 6,596 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts.  A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: General Polynomial Equations</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: General Polynomial Equations">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: General Polynomial Equations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Polynomials.html#Polynomials" rel="up" title="Polynomials">
<link href="Roots-of-Polynomials-Examples.html#Roots-of-Polynomials-Examples" rel="next" title="Roots of Polynomials Examples">
<link href="Cubic-Equations.html#Cubic-Equations" rel="previous" title="Cubic Equations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="General-Polynomial-Equations"></a>
<div class="header">
<p>
Next: <a href="Roots-of-Polynomials-Examples.html#Roots-of-Polynomials-Examples" accesskey="n" rel="next">Roots of Polynomials Examples</a>, Previous: <a href="Cubic-Equations.html#Cubic-Equations" accesskey="p" rel="previous">Cubic Equations</a>, Up: <a href="Polynomials.html#Polynomials" accesskey="u" rel="up">Polynomials</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="General-Polynomial-Equations-1"></a>
<h3 class="section">6.5 General Polynomial Equations</h3>
<a name="index-general-polynomial-equations_002c-solving"></a>

<p>The roots of polynomial equations cannot be found analytically beyond
the special cases of the quadratic, cubic and quartic equation.  The
algorithm described in this section uses an iterative method to find the
approximate locations of roots of higher order polynomials.
</p>
<dl>
<dt><a name="index-gsl_005fpoly_005fcomplex_005fworkspace_005falloc"></a>Function: <em>gsl_poly_complex_workspace *</em> <strong>gsl_poly_complex_workspace_alloc</strong> <em>(size_t <var>n</var>)</em></dt>
<dd><a name="index-gsl_005fpoly_005fcomplex_005fworkspace"></a>
<p>This function allocates space for a <code>gsl_poly_complex_workspace</code>
struct and a workspace suitable for solving a polynomial with <var>n</var>
coefficients using the routine <code>gsl_poly_complex_solve</code>.
</p>
<p>The function returns a pointer to the newly allocated
<code>gsl_poly_complex_workspace</code> if no errors were detected, and a null
pointer in the case of error.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fpoly_005fcomplex_005fworkspace_005ffree"></a>Function: <em>void</em> <strong>gsl_poly_complex_workspace_free</strong> <em>(gsl_poly_complex_workspace * <var>w</var>)</em></dt>
<dd><p>This function frees all the memory associated with the workspace
<var>w</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fpoly_005fcomplex_005fsolve"></a>Function: <em>int</em> <strong>gsl_poly_complex_solve</strong> <em>(const double * <var>a</var>, size_t <var>n</var>, gsl_poly_complex_workspace * <var>w</var>, gsl_complex_packed_ptr <var>z</var>)</em></dt>
<dd><p>This function computes the roots of the general polynomial 
<em>P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}</em> using 
balanced-QR reduction of the companion matrix.  The parameter <var>n</var>
specifies the length of the coefficient array.  The coefficient of the
highest order term must be non-zero.  The function requires a workspace
<var>w</var> of the appropriate size.  The <em>n-1</em> roots are returned in
the packed complex array <var>z</var> of length <em>2(n-1)</em>, alternating
real and imaginary parts.
</p>
<p>The function returns <code>GSL_SUCCESS</code> if all the roots are found. If
the QR reduction does not converge, the error handler is invoked with
an error code of <code>GSL_EFAILED</code>.  Note that due to finite precision,
roots of higher multiplicity are returned as a cluster of simple roots
with reduced accuracy.  The solution of polynomials with higher-order
roots requires specialized algorithms that take the multiplicity
structure into account (see e.g. Z. Zeng, Algorithm 835, ACM
Transactions on Mathematical Software, Volume 30, Issue 2 (2004), pp
218&ndash;236).
</p></dd></dl>

<hr>
<div class="header">
<p>
Next: <a href="Roots-of-Polynomials-Examples.html#Roots-of-Polynomials-Examples" accesskey="n" rel="next">Roots of Polynomials Examples</a>, Previous: <a href="Cubic-Equations.html#Cubic-Equations" accesskey="p" rel="previous">Cubic Equations</a>, Up: <a href="Polynomials.html#Polynomials" accesskey="u" rel="up">Polynomials</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>