1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Householder Transformations</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Householder Transformations">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Householder Transformations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Linear-Algebra.html#Linear-Algebra" rel="up" title="Linear Algebra">
<link href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" rel="next" title="Householder solver for linear systems">
<link href="Bidiagonalization.html#Bidiagonalization" rel="previous" title="Bidiagonalization">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Householder-Transformations"></a>
<div class="header">
<p>
Next: <a href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" accesskey="n" rel="next">Householder solver for linear systems</a>, Previous: <a href="Bidiagonalization.html#Bidiagonalization" accesskey="p" rel="previous">Bidiagonalization</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Householder-Transformations-1"></a>
<h3 class="section">14.11 Householder Transformations</h3>
<a name="index-Householder-matrix"></a>
<a name="index-Householder-transformation"></a>
<a name="index-transformation_002c-Householder"></a>
<p>A Householder transformation is a rank-1 modification of the identity
matrix which can be used to zero out selected elements of a vector. A
Householder matrix <em>P</em> takes the form,
where <em>v</em> is a vector (called the <em>Householder vector</em>) and
<em>\tau = 2/(v^T v)</em>. The functions described in this section use the
rank-1 structure of the Householder matrix to create and apply
Householder transformations efficiently.
</p>
<dl>
<dt><a name="index-gsl_005flinalg_005fhouseholder_005ftransform"></a>Function: <em>double</em> <strong>gsl_linalg_householder_transform</strong> <em>(gsl_vector * <var>v</var>)</em></dt>
<dt><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005ftransform"></a>Function: <em>gsl_complex</em> <strong>gsl_linalg_complex_householder_transform</strong> <em>(gsl_vector_complex * <var>v</var>)</em></dt>
<dd><p>This function prepares a Householder transformation <em>P = I - \tau v
v^T</em> which can be used to zero all the elements of the input vector except
the first. On output the transformation is stored in the vector <var>v</var>
and the scalar <em>\tau</em> is returned.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fhouseholder_005fhm"></a>Function: <em>int</em> <strong>gsl_linalg_householder_hm</strong> <em>(double <var>tau</var>, const gsl_vector * <var>v</var>, gsl_matrix * <var>A</var>)</em></dt>
<dt><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fhm"></a>Function: <em>int</em> <strong>gsl_linalg_complex_householder_hm</strong> <em>(gsl_complex <var>tau</var>, const gsl_vector_complex * <var>v</var>, gsl_matrix_complex * <var>A</var>)</em></dt>
<dd><p>This function applies the Householder matrix <em>P</em> defined by the
scalar <var>tau</var> and the vector <var>v</var> to the left-hand side of the
matrix <var>A</var>. On output the result <em>P A</em> is stored in <var>A</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fhouseholder_005fmh"></a>Function: <em>int</em> <strong>gsl_linalg_householder_mh</strong> <em>(double <var>tau</var>, const gsl_vector * <var>v</var>, gsl_matrix * <var>A</var>)</em></dt>
<dt><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fmh"></a>Function: <em>int</em> <strong>gsl_linalg_complex_householder_mh</strong> <em>(gsl_complex <var>tau</var>, const gsl_vector_complex * <var>v</var>, gsl_matrix_complex * <var>A</var>)</em></dt>
<dd><p>This function applies the Householder matrix <em>P</em> defined by the
scalar <var>tau</var> and the vector <var>v</var> to the right-hand side of the
matrix <var>A</var>. On output the result <em>A P</em> is stored in <var>A</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fhouseholder_005fhv"></a>Function: <em>int</em> <strong>gsl_linalg_householder_hv</strong> <em>(double <var>tau</var>, const gsl_vector * <var>v</var>, gsl_vector * <var>w</var>)</em></dt>
<dt><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fhv"></a>Function: <em>int</em> <strong>gsl_linalg_complex_householder_hv</strong> <em>(gsl_complex <var>tau</var>, const gsl_vector_complex * <var>v</var>, gsl_vector_complex * <var>w</var>)</em></dt>
<dd><p>This function applies the Householder transformation <em>P</em> defined by
the scalar <var>tau</var> and the vector <var>v</var> to the vector <var>w</var>. On
output the result <em>P w</em> is stored in <var>w</var>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" accesskey="n" rel="next">Householder solver for linear systems</a>, Previous: <a href="Bidiagonalization.html#Bidiagonalization" accesskey="p" rel="previous">Bidiagonalization</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|