File: Householder-Transformations.html

package info (click to toggle)
gsl-ref-html 1.16-1
  • links: PTS
  • area: non-free
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 5,816 kB
  • ctags: 4,130
  • sloc: makefile: 35
file content (121 lines) | stat: -rw-r--r-- 7,505 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts.  A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Householder Transformations</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Householder Transformations">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Householder Transformations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Linear-Algebra.html#Linear-Algebra" rel="up" title="Linear Algebra">
<link href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" rel="next" title="Householder solver for linear systems">
<link href="Bidiagonalization.html#Bidiagonalization" rel="previous" title="Bidiagonalization">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Householder-Transformations"></a>
<div class="header">
<p>
Next: <a href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" accesskey="n" rel="next">Householder solver for linear systems</a>, Previous: <a href="Bidiagonalization.html#Bidiagonalization" accesskey="p" rel="previous">Bidiagonalization</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Householder-Transformations-1"></a>
<h3 class="section">14.11 Householder Transformations</h3>
<a name="index-Householder-matrix"></a>
<a name="index-Householder-transformation"></a>
<a name="index-transformation_002c-Householder"></a>

<p>A Householder transformation is a rank-1 modification of the identity
matrix which can be used to zero out selected elements of a vector.  A
Householder matrix <em>P</em> takes the form,
where <em>v</em> is a vector (called the <em>Householder vector</em>) and
<em>\tau = 2/(v^T v)</em>.  The functions described in this section use the
rank-1 structure of the Householder matrix to create and apply
Householder transformations efficiently.
</p>
<dl>
<dt><a name="index-gsl_005flinalg_005fhouseholder_005ftransform"></a>Function: <em>double</em> <strong>gsl_linalg_householder_transform</strong> <em>(gsl_vector * <var>v</var>)</em></dt>
<dt><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005ftransform"></a>Function: <em>gsl_complex</em> <strong>gsl_linalg_complex_householder_transform</strong> <em>(gsl_vector_complex * <var>v</var>)</em></dt>
<dd><p>This function prepares a Householder transformation <em>P = I - \tau v
v^T</em> which can be used to zero all the elements of the input vector except
the first.  On output the transformation is stored in the vector <var>v</var>
and the scalar <em>\tau</em> is returned.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005flinalg_005fhouseholder_005fhm"></a>Function: <em>int</em> <strong>gsl_linalg_householder_hm</strong> <em>(double <var>tau</var>, const gsl_vector * <var>v</var>, gsl_matrix * <var>A</var>)</em></dt>
<dt><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fhm"></a>Function: <em>int</em> <strong>gsl_linalg_complex_householder_hm</strong> <em>(gsl_complex <var>tau</var>, const gsl_vector_complex * <var>v</var>, gsl_matrix_complex * <var>A</var>)</em></dt>
<dd><p>This function applies the Householder matrix <em>P</em> defined by the
scalar <var>tau</var> and the vector <var>v</var> to the left-hand side of the
matrix <var>A</var>. On output the result <em>P A</em> is stored in <var>A</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005flinalg_005fhouseholder_005fmh"></a>Function: <em>int</em> <strong>gsl_linalg_householder_mh</strong> <em>(double <var>tau</var>, const gsl_vector * <var>v</var>, gsl_matrix * <var>A</var>)</em></dt>
<dt><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fmh"></a>Function: <em>int</em> <strong>gsl_linalg_complex_householder_mh</strong> <em>(gsl_complex <var>tau</var>, const gsl_vector_complex * <var>v</var>, gsl_matrix_complex * <var>A</var>)</em></dt>
<dd><p>This function applies the Householder matrix <em>P</em> defined by the
scalar <var>tau</var> and the vector <var>v</var> to the right-hand side of the
matrix <var>A</var>. On output the result <em>A P</em> is stored in <var>A</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005flinalg_005fhouseholder_005fhv"></a>Function: <em>int</em> <strong>gsl_linalg_householder_hv</strong> <em>(double <var>tau</var>, const gsl_vector * <var>v</var>, gsl_vector * <var>w</var>)</em></dt>
<dt><a name="index-gsl_005flinalg_005fcomplex_005fhouseholder_005fhv"></a>Function: <em>int</em> <strong>gsl_linalg_complex_householder_hv</strong> <em>(gsl_complex <var>tau</var>, const gsl_vector_complex * <var>v</var>, gsl_vector_complex * <var>w</var>)</em></dt>
<dd><p>This function applies the Householder transformation <em>P</em> defined by
the scalar <var>tau</var> and the vector <var>v</var> to the vector <var>w</var>.  On
output the result <em>P w</em> is stored in <var>w</var>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Householder-solver-for-linear-systems.html#Householder-solver-for-linear-systems" accesskey="n" rel="next">Householder solver for linear systems</a>, Previous: <a href="Bidiagonalization.html#Bidiagonalization" accesskey="p" rel="previous">Bidiagonalization</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>