1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Hypergeometric Functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Hypergeometric Functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Hypergeometric Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Special-Functions.html#Special-Functions" rel="up" title="Special Functions">
<link href="Laguerre-Functions.html#Laguerre-Functions" rel="next" title="Laguerre Functions">
<link href="Gegenbauer-Functions.html#Gegenbauer-Functions" rel="previous" title="Gegenbauer Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Hypergeometric-Functions"></a>
<div class="header">
<p>
Next: <a href="Laguerre-Functions.html#Laguerre-Functions" accesskey="n" rel="next">Laguerre Functions</a>, Previous: <a href="Gegenbauer-Functions.html#Gegenbauer-Functions" accesskey="p" rel="previous">Gegenbauer Functions</a>, Up: <a href="Special-Functions.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Hypergeometric-Functions-1"></a>
<h3 class="section">7.21 Hypergeometric Functions</h3>
<a name="index-hypergeometric-functions"></a>
<a name="index-confluent-hypergeometric-functions"></a>
<p>Hypergeometric functions are described in Abramowitz & Stegun, Chapters
13 and 15. These functions are declared in the header file
<samp>gsl_sf_hyperg.h</samp>.
</p>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005f0F1"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_0F1</strong> <em>(double <var>c</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005f0F1_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_0F1_e</strong> <em>(double <var>c</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the hypergeometric function <em>0F1(c,x)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fint"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_1F1_int</strong> <em>(int <var>m</var>, int <var>n</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fint_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_1F1_int_e</strong> <em>(int <var>m</var>, int <var>n</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the confluent hypergeometric function
<em>1F1(m,n,x) = M(m,n,x)</em> for integer parameters <var>m</var>, <var>n</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005f1F1"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_1F1</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005f1F1_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_1F1_e</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the confluent hypergeometric function
<em>1F1(a,b,x) = M(a,b,x)</em> for general parameters <var>a</var>, <var>b</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005fU_005fint"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_U_int</strong> <em>(int <var>m</var>, int <var>n</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005fU_005fint_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_U_int_e</strong> <em>(int <var>m</var>, int <var>n</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the confluent hypergeometric function
<em>U(m,n,x)</em> for integer parameters <var>m</var>, <var>n</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005fU_005fint_005fe10_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_U_int_e10_e</strong> <em>(int <var>m</var>, int <var>n</var>, double <var>x</var>, gsl_sf_result_e10 * <var>result</var>)</em></dt>
<dd><p>This routine computes the confluent hypergeometric function
<em>U(m,n,x)</em> for integer parameters <var>m</var>, <var>n</var> using the
<code>gsl_sf_result_e10</code> type to return a result with extended range.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005fU"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_U</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005fU_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_U_e</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the confluent hypergeometric function <em>U(a,b,x)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005fU_005fe10_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_U_e10_e</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>x</var>, gsl_sf_result_e10 * <var>result</var>)</em></dt>
<dd><p>This routine computes the confluent hypergeometric function
<em>U(a,b,x)</em> using the <code>gsl_sf_result_e10</code> type to return a
result with extended range.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F1"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_2F1</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>c</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_2F1_e</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>c</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the Gauss hypergeometric function
<em>2F1(a,b,c,x) = F(a,b,c,x)</em> for <em>|x| < 1</em>.
</p>
<p>If the arguments <em>(a,b,c,x)</em> are too close to a singularity then
the function can return the error code <code>GSL_EMAXITER</code> when the
series approximation converges too slowly. This occurs in the region of
<em>x=1</em>, <em>c - a - b = m</em> for integer m.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_2F1_conj</strong> <em>(double <var>aR</var>, double <var>aI</var>, double <var>c</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_2F1_conj_e</strong> <em>(double <var>aR</var>, double <var>aI</var>, double <var>c</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the Gauss hypergeometric function
<em>2F1(a_R + i a_I, a_R - i a_I, c, x)</em> with complex parameters
for <em>|x| < 1</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F1_005frenorm"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_2F1_renorm</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>c</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F1_005frenorm_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_2F1_renorm_e</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>c</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the renormalized Gauss hypergeometric function
<em>2F1(a,b,c,x) / \Gamma(c)</em> for <em>|x| < 1</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005frenorm"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_2F1_conj_renorm</strong> <em>(double <var>aR</var>, double <var>aI</var>, double <var>c</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F1_005fconj_005frenorm_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_2F1_conj_renorm_e</strong> <em>(double <var>aR</var>, double <var>aI</var>, double <var>c</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the renormalized Gauss hypergeometric function
<em>2F1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)</em> for <em>|x| < 1</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F0"></a>Function: <em>double</em> <strong>gsl_sf_hyperg_2F0</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fhyperg_005f2F0_005fe"></a>Function: <em>int</em> <strong>gsl_sf_hyperg_2F0_e</strong> <em>(double <var>a</var>, double <var>b</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the hypergeometric function <em>2F0(a,b,x)</em>. The series representation
is a divergent hypergeometric series. However, for <em>x < 0</em> we
have
<em>2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)</em>
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Laguerre-Functions.html#Laguerre-Functions" accesskey="n" rel="next">Laguerre Functions</a>, Previous: <a href="Gegenbauer-Functions.html#Gegenbauer-Functions" accesskey="p" rel="previous">Gegenbauer Functions</a>, Up: <a href="Special-Functions.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|