1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Integrands with singular weight functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Integrands with singular weight functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Integrands with singular weight functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Numerical-Integration-Introduction.html#Numerical-Integration-Introduction" rel="up" title="Numerical Integration Introduction">
<link href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html#QNG-non_002dadaptive-Gauss_002dKronrod-integration" rel="next" title="QNG non-adaptive Gauss-Kronrod integration">
<link href="Integrands-with-weight-functions.html#Integrands-with-weight-functions" rel="previous" title="Integrands with weight functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Integrands-with-singular-weight-functions"></a>
<div class="header">
<p>
Previous: <a href="Integrands-with-weight-functions.html#Integrands-with-weight-functions" accesskey="p" rel="previous">Integrands with weight functions</a>, Up: <a href="Numerical-Integration-Introduction.html#Numerical-Integration-Introduction" accesskey="u" rel="up">Numerical Integration Introduction</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Integrands-with-singular-weight-functions-1"></a>
<h4 class="subsection">17.1.3 Integrands with singular weight functions</h4>
<p>The presence of singularities (or other behavior) in the integrand can
cause slow convergence in the Chebyshev approximation. The modified
Clenshaw-Curtis rules used in <small>QUADPACK</small> separate out several common
weight functions which cause slow convergence.
</p>
<p>These weight functions are integrated analytically against the Chebyshev
polynomials to precompute <em>modified Chebyshev moments</em>. Combining
the moments with the Chebyshev approximation to the function gives the
desired integral. The use of analytic integration for the singular part
of the function allows exact cancellations and substantially improves
the overall convergence behavior of the integration.
</p>
</body>
</html>
|