1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Legendre Form of Incomplete Elliptic Integrals</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Legendre Form of Incomplete Elliptic Integrals">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Legendre Form of Incomplete Elliptic Integrals">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Elliptic-Integrals.html#Elliptic-Integrals" rel="up" title="Elliptic Integrals">
<link href="Carlson-Forms.html#Carlson-Forms" rel="next" title="Carlson Forms">
<link href="Legendre-Form-of-Complete-Elliptic-Integrals.html#Legendre-Form-of-Complete-Elliptic-Integrals" rel="previous" title="Legendre Form of Complete Elliptic Integrals">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Legendre-Form-of-Incomplete-Elliptic-Integrals"></a>
<div class="header">
<p>
Next: <a href="Carlson-Forms.html#Carlson-Forms" accesskey="n" rel="next">Carlson Forms</a>, Previous: <a href="Legendre-Form-of-Complete-Elliptic-Integrals.html#Legendre-Form-of-Complete-Elliptic-Integrals" accesskey="p" rel="previous">Legendre Form of Complete Elliptic Integrals</a>, Up: <a href="Elliptic-Integrals.html#Elliptic-Integrals" accesskey="u" rel="up">Elliptic Integrals</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Legendre-Form-of-Incomplete-Elliptic-Integrals-1"></a>
<h4 class="subsection">7.13.4 Legendre Form of Incomplete Elliptic Integrals</h4>
<dl>
<dt><a name="index-gsl_005fsf_005fellint_005fF"></a>Function: <em>double</em> <strong>gsl_sf_ellint_F</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fellint_005fF_005fe"></a>Function: <em>int</em> <strong>gsl_sf_ellint_F_e</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the incomplete elliptic integral <em>F(\phi,k)</em>
to the accuracy specified by the mode variable <var>mode</var>.
Note that Abramowitz & Stegun define this function in terms of the
parameter <em>m = k^2</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fellint_005fE"></a>Function: <em>double</em> <strong>gsl_sf_ellint_E</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fellint_005fE_005fe"></a>Function: <em>int</em> <strong>gsl_sf_ellint_E_e</strong> <em>(double <var>phi</var>, double <var>k</var>, gsl_mode_t <var>mode</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the incomplete elliptic integral <em>E(\phi,k)</em>
to the accuracy specified by the mode variable <var>mode</var>.
Note that Abramowitz & Stegun define this function in terms of the
parameter <em>m = k^2</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fellint_005fP"></a>Function: <em>double</em> <strong>gsl_sf_ellint_P</strong> <em>(double <var>phi</var>, double <var>k</var>, double <var>n</var>, gsl_mode_t <var>mode</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fellint_005fP_005fe"></a>Function: <em>int</em> <strong>gsl_sf_ellint_P_e</strong> <em>(double <var>phi</var>, double <var>k</var>, double <var>n</var>, gsl_mode_t <var>mode</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the incomplete elliptic integral <em>\Pi(\phi,k,n)</em>
to the accuracy specified by the mode variable <var>mode</var>.
Note that Abramowitz & Stegun define this function in terms of the
parameters <em>m = k^2</em> and <em>\sin^2(\alpha) = k^2</em>, with the
change of sign <em>n \to -n</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fellint_005fD"></a>Function: <em>double</em> <strong>gsl_sf_ellint_D</strong> <em>(double <var>phi</var>, double <var>k</var>, double <var>n</var>, gsl_mode_t <var>mode</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fellint_005fD_005fe"></a>Function: <em>int</em> <strong>gsl_sf_ellint_D_e</strong> <em>(double <var>phi</var>, double <var>k</var>, double <var>n</var>, gsl_mode_t <var>mode</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These functions compute the incomplete elliptic integral
<em>D(\phi,k)</em> which is defined through the Carlson form <em>RD(x,y,z)</em>
by the following relation,
The argument <var>n</var> is not used and will be removed in a future release.
</p>
</dd></dl>
</body>
</html>
|