1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Linear regression</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Linear regression">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Linear regression">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Least_002dSquares-Fitting.html#Least_002dSquares-Fitting" rel="up" title="Least-Squares Fitting">
<link href="Linear-fitting-without-a-constant-term.html#Linear-fitting-without-a-constant-term" rel="next" title="Linear fitting without a constant term">
<link href="Fitting-Overview.html#Fitting-Overview" rel="previous" title="Fitting Overview">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Linear-regression"></a>
<div class="header">
<p>
Next: <a href="Linear-fitting-without-a-constant-term.html#Linear-fitting-without-a-constant-term" accesskey="n" rel="next">Linear fitting without a constant term</a>, Previous: <a href="Fitting-Overview.html#Fitting-Overview" accesskey="p" rel="previous">Fitting Overview</a>, Up: <a href="Least_002dSquares-Fitting.html#Least_002dSquares-Fitting" accesskey="u" rel="up">Least-Squares Fitting</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Linear-regression-1"></a>
<h3 class="section">37.2 Linear regression</h3>
<a name="index-linear-regression"></a>
<p>The functions described in this section can be used to perform
least-squares fits to a straight line model, <em>Y(c,x) = c_0 + c_1 x</em>.
</p>
<a name="index-covariance-matrix_002c-from-linear-regression"></a>
<dl>
<dt><a name="index-gsl_005ffit_005flinear"></a>Function: <em>int</em> <strong>gsl_fit_linear</strong> <em>(const double * <var>x</var>, const size_t <var>xstride</var>, const double * <var>y</var>, const size_t <var>ystride</var>, size_t <var>n</var>, double * <var>c0</var>, double * <var>c1</var>, double * <var>cov00</var>, double * <var>cov01</var>, double * <var>cov11</var>, double * <var>sumsq</var>)</em></dt>
<dd><p>This function computes the best-fit linear regression coefficients
(<var>c0</var>,<var>c1</var>) of the model <em>Y = c_0 + c_1 X</em> for the dataset
(<var>x</var>, <var>y</var>), two vectors of length <var>n</var> with strides
<var>xstride</var> and <var>ystride</var>. The errors on <var>y</var> are assumed unknown so
the variance-covariance matrix for the
parameters (<var>c0</var>, <var>c1</var>) is estimated from the scatter of the
points around the best-fit line and returned via the parameters
(<var>cov00</var>, <var>cov01</var>, <var>cov11</var>).
The sum of squares of the residuals from the best-fit line is returned
in <var>sumsq</var>. Note: the correlation coefficient of the data can be computed using <code>gsl_stats_correlation</code> (see <a href="Correlation.html#Correlation">Correlation</a>), it does not depend on the fit.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005ffit_005fwlinear"></a>Function: <em>int</em> <strong>gsl_fit_wlinear</strong> <em>(const double * <var>x</var>, const size_t <var>xstride</var>, const double * <var>w</var>, const size_t <var>wstride</var>, const double * <var>y</var>, const size_t <var>ystride</var>, size_t <var>n</var>, double * <var>c0</var>, double * <var>c1</var>, double * <var>cov00</var>, double * <var>cov01</var>, double * <var>cov11</var>, double * <var>chisq</var>)</em></dt>
<dd><p>This function computes the best-fit linear regression coefficients
(<var>c0</var>,<var>c1</var>) of the model <em>Y = c_0 + c_1 X</em> for the weighted
dataset (<var>x</var>, <var>y</var>), two vectors of length <var>n</var> with strides
<var>xstride</var> and <var>ystride</var>. The vector <var>w</var>, of length <var>n</var>
and stride <var>wstride</var>, specifies the weight of each datapoint. The
weight is the reciprocal of the variance for each datapoint in <var>y</var>.
</p>
<p>The covariance matrix for the parameters (<var>c0</var>, <var>c1</var>) is
computed using the weights and returned via the parameters
(<var>cov00</var>, <var>cov01</var>, <var>cov11</var>). The weighted sum of squares
of the residuals from the best-fit line, <em>\chi^2</em>, is returned in
<var>chisq</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005ffit_005flinear_005fest"></a>Function: <em>int</em> <strong>gsl_fit_linear_est</strong> <em>(double <var>x</var>, double <var>c0</var>, double <var>c1</var>, double <var>cov00</var>, double <var>cov01</var>, double <var>cov11</var>, double * <var>y</var>, double * <var>y_err</var>)</em></dt>
<dd><p>This function uses the best-fit linear regression coefficients
<var>c0</var>, <var>c1</var> and their covariance
<var>cov00</var>, <var>cov01</var>, <var>cov11</var> to compute the fitted function
<var>y</var> and its standard deviation <var>y_err</var> for the model <em>Y =
c_0 + c_1 X</em> at the point <var>x</var>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Linear-fitting-without-a-constant-term.html#Linear-fitting-without-a-constant-term" accesskey="n" rel="next">Linear fitting without a constant term</a>, Previous: <a href="Fitting-Overview.html#Fitting-Overview" accesskey="p" rel="previous">Fitting Overview</a>, Up: <a href="Least_002dSquares-Fitting.html#Least_002dSquares-Fitting" accesskey="u" rel="up">Least-Squares Fitting</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|