1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Mathematical Constants</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Mathematical Constants">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Mathematical Constants">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Mathematical-Functions.html#Mathematical-Functions" rel="up" title="Mathematical Functions">
<link href="Infinities-and-Not_002da_002dnumber.html#Infinities-and-Not_002da_002dnumber" rel="next" title="Infinities and Not-a-number">
<link href="Mathematical-Functions.html#Mathematical-Functions" rel="previous" title="Mathematical Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Mathematical-Constants"></a>
<div class="header">
<p>
Next: <a href="Infinities-and-Not_002da_002dnumber.html#Infinities-and-Not_002da_002dnumber" accesskey="n" rel="next">Infinities and Not-a-number</a>, Up: <a href="Mathematical-Functions.html#Mathematical-Functions" accesskey="u" rel="up">Mathematical Functions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Mathematical-Constants-1"></a>
<h3 class="section">4.1 Mathematical Constants</h3>
<a name="index-mathematical-constants_002c-defined-as-macros"></a>
<a name="index-numerical-constants_002c-defined-as-macros"></a>
<a name="index-constants_002c-mathematical_002d_002d_002ddefined-as-macros"></a>
<a name="index-macros-for-mathematical-constants"></a>
<p>The library ensures that the standard <small>BSD</small> mathematical constants
are defined. For reference, here is a list of the constants:
</p>
<dl compact="compact">
<dt><code>M_E</code></dt>
<dd><a name="index-e_002c-defined-as-a-macro"></a>
<p>The base of exponentials, <em>e</em>
</p>
</dd>
<dt><code>M_LOG2E</code></dt>
<dd><p>The base-2 logarithm of <em>e</em>, <em>\log_2 (e)</em>
</p>
</dd>
<dt><code>M_LOG10E</code></dt>
<dd><p>The base-10 logarithm of <em>e</em>, <em>\log_10 (e)</em>
</p>
</dd>
<dt><code>M_SQRT2</code></dt>
<dd><p>The square root of two, <em>\sqrt 2</em>
</p>
</dd>
<dt><code>M_SQRT1_2</code></dt>
<dd><p>The square root of one-half, <em>\sqrt{1/2}</em>
</p>
</dd>
<dt><code>M_SQRT3</code></dt>
<dd><p>The square root of three, <em>\sqrt 3</em>
</p>
</dd>
<dt><code>M_PI</code></dt>
<dd><a name="index-pi_002c-defined-as-a-macro"></a>
<p>The constant pi, <em>\pi</em>
</p>
</dd>
<dt><code>M_PI_2</code></dt>
<dd><p>Pi divided by two, <em>\pi/2</em>
</p>
</dd>
<dt><code>M_PI_4</code></dt>
<dd><p>Pi divided by four, <em>\pi/4</em>
</p>
</dd>
<dt><code>M_SQRTPI</code></dt>
<dd><p>The square root of pi, <em>\sqrt\pi</em>
</p>
</dd>
<dt><code>M_2_SQRTPI</code></dt>
<dd><p>Two divided by the square root of pi, <em>2/\sqrt\pi</em>
</p>
</dd>
<dt><code>M_1_PI</code></dt>
<dd><p>The reciprocal of pi, <em>1/\pi</em>
</p>
</dd>
<dt><code>M_2_PI</code></dt>
<dd><p>Twice the reciprocal of pi, <em>2/\pi</em>
</p>
</dd>
<dt><code>M_LN10</code></dt>
<dd><p>The natural logarithm of ten, <em>\ln(10)</em>
</p>
</dd>
<dt><code>M_LN2</code></dt>
<dd><p>The natural logarithm of two, <em>\ln(2)</em>
</p>
</dd>
<dt><code>M_LNPI</code></dt>
<dd><p>The natural logarithm of pi, <em>\ln(\pi)</em>
</p>
</dd>
<dt><code>M_EULER</code></dt>
<dd><a name="index-Euler_0027s-constant_002c-defined-as-a-macro"></a>
<p>Euler’s constant, <em>\gamma</em>
</p>
</dd>
</dl>
</body>
</html>
|