1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Median and Percentiles</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Median and Percentiles">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Median and Percentiles">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Example-statistical-programs.html#Example-statistical-programs" rel="next" title="Example statistical programs">
<link href="Maximum-and-Minimum-values.html#Maximum-and-Minimum-values" rel="previous" title="Maximum and Minimum values">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Median-and-Percentiles"></a>
<div class="header">
<p>
Next: <a href="Example-statistical-programs.html#Example-statistical-programs" accesskey="n" rel="next">Example statistical programs</a>, Previous: <a href="Maximum-and-Minimum-values.html#Maximum-and-Minimum-values" accesskey="p" rel="previous">Maximum and Minimum values</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Median-and-Percentiles-1"></a>
<h3 class="section">21.9 Median and Percentiles</h3>
<p>The median and percentile functions described in this section operate on
sorted data. For convenience we use <em>quantiles</em>, measured on a scale
of 0 to 1, instead of percentiles (which use a scale of 0 to 100).
</p>
<dl>
<dt><a name="index-gsl_005fstats_005fmedian_005ffrom_005fsorted_005fdata"></a>Function: <em>double</em> <strong>gsl_stats_median_from_sorted_data</strong> <em>(const double <var>sorted_data</var>[], size_t <var>stride</var>, size_t <var>n</var>)</em></dt>
<dd><p>This function returns the median value of <var>sorted_data</var>, a dataset
of length <var>n</var> with stride <var>stride</var>. The elements of the array
must be in ascending numerical order. There are no checks to see
whether the data are sorted, so the function <code>gsl_sort</code> should
always be used first.
</p>
<p>When the dataset has an odd number of elements the median is the value
of element <em>(n-1)/2</em>. When the dataset has an even number of
elements the median is the mean of the two nearest middle values,
elements <em>(n-1)/2</em> and <em>n/2</em>. Since the algorithm for
computing the median involves interpolation this function always returns
a floating-point number, even for integer data types.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fstats_005fquantile_005ffrom_005fsorted_005fdata"></a>Function: <em>double</em> <strong>gsl_stats_quantile_from_sorted_data</strong> <em>(const double <var>sorted_data</var>[], size_t <var>stride</var>, size_t <var>n</var>, double <var>f</var>)</em></dt>
<dd><p>This function returns a quantile value of <var>sorted_data</var>, a
double-precision array of length <var>n</var> with stride <var>stride</var>. The
elements of the array must be in ascending numerical order. The
quantile is determined by the <var>f</var>, a fraction between 0 and 1. For
example, to compute the value of the 75th percentile <var>f</var> should have
the value 0.75.
</p>
<p>There are no checks to see whether the data are sorted, so the function
<code>gsl_sort</code> should always be used first.
</p>
<p>The quantile is found by interpolation, using the formula
where <em>i</em> is <code>floor</code>(<em>(n - 1)f</em>) and <em>\delta</em> is
<em>(n-1)f - i</em>.
</p>
<p>Thus the minimum value of the array (<code>data[0*stride]</code>) is given by
<var>f</var> equal to zero, the maximum value (<code>data[(n-1)*stride]</code>) is
given by <var>f</var> equal to one and the median value is given by <var>f</var>
equal to 0.5. Since the algorithm for computing quantiles involves
interpolation this function always returns a floating-point number, even
for integer data types.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Example-statistical-programs.html#Example-statistical-programs" accesskey="n" rel="next">Example statistical programs</a>, Previous: <a href="Maximum-and-Minimum-values.html#Maximum-and-Minimum-values" accesskey="p" rel="previous">Maximum and Minimum values</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|