1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Numerical Integration Introduction</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Numerical Integration Introduction">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Numerical Integration Introduction">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Numerical-Integration.html#Numerical-Integration" rel="up" title="Numerical Integration">
<link href="Integrands-without-weight-functions.html#Integrands-without-weight-functions" rel="next" title="Integrands without weight functions">
<link href="Numerical-Integration.html#Numerical-Integration" rel="previous" title="Numerical Integration">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Numerical-Integration-Introduction"></a>
<div class="header">
<p>
Next: <a href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html#QNG-non_002dadaptive-Gauss_002dKronrod-integration" accesskey="n" rel="next">QNG non-adaptive Gauss-Kronrod integration</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Introduction-2"></a>
<h3 class="section">17.1 Introduction</h3>
<p>Each algorithm computes an approximation to a definite integral of the
form,
where <em>w(x)</em> is a weight function (for general integrands <em>w(x)=1</em>).
The user provides absolute and relative error bounds
<em>(epsabs, epsrel)</em> which specify the following accuracy requirement,
where
<em>RESULT</em> is the numerical approximation obtained by the
algorithm. The algorithms attempt to estimate the absolute error
<em>ABSERR = |RESULT - I|</em> in such a way that the following inequality
holds,
In short, the routines return the first approximation
which has an absolute error smaller than <em>epsabs</em> or a relative error smaller than <em>epsrel</em>.
</p>
<p>Note that this is an <i>either-or</i> constraint,
not simultaneous. To compute to a specified absolute error, set <em>epsrel</em> to zero. To compute to a specified relative error,
set <em>epsabs</em> to zero.
The routines will fail to converge if the error bounds are too
stringent, but always return the best approximation obtained up to
that stage.
</p>
<p>The algorithms in <small>QUADPACK</small> use a naming convention based on the
following letters,
</p>
<div class="display">
<pre class="display"><code>Q</code> - quadrature routine
<code>N</code> - non-adaptive integrator
<code>A</code> - adaptive integrator
<code>G</code> - general integrand (user-defined)
<code>W</code> - weight function with integrand
<code>S</code> - singularities can be more readily integrated
<code>P</code> - points of special difficulty can be supplied
<code>I</code> - infinite range of integration
<code>O</code> - oscillatory weight function, cos or sin
<code>F</code> - Fourier integral
<code>C</code> - Cauchy principal value
</pre></div>
<p>The algorithms are built on pairs of quadrature rules, a higher order
rule and a lower order rule. The higher order rule is used to compute
the best approximation to an integral over a small range. The
difference between the results of the higher order rule and the lower
order rule gives an estimate of the error in the approximation.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="Integrands-without-weight-functions.html#Integrands-without-weight-functions" accesskey="1">Integrands without weight functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Integrands-with-weight-functions.html#Integrands-with-weight-functions" accesskey="2">Integrands with weight functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Integrands-with-singular-weight-functions.html#Integrands-with-singular-weight-functions" accesskey="3">Integrands with singular weight functions</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<div class="header">
<p>
Next: <a href="QNG-non_002dadaptive-Gauss_002dKronrod-integration.html#QNG-non_002dadaptive-Gauss_002dKronrod-integration" accesskey="n" rel="next">QNG non-adaptive Gauss-Kronrod integration</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|