1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Overview of Multidimensional Root Finding</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Overview of Multidimensional Root Finding">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Overview of Multidimensional Root Finding">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Multidimensional-Root_002dFinding.html#Multidimensional-Root_002dFinding" rel="up" title="Multidimensional Root-Finding">
<link href="Initializing-the-Multidimensional-Solver.html#Initializing-the-Multidimensional-Solver" rel="next" title="Initializing the Multidimensional Solver">
<link href="Multidimensional-Root_002dFinding.html#Multidimensional-Root_002dFinding" rel="previous" title="Multidimensional Root-Finding">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Overview-of-Multidimensional-Root-Finding"></a>
<div class="header">
<p>
Next: <a href="Initializing-the-Multidimensional-Solver.html#Initializing-the-Multidimensional-Solver" accesskey="n" rel="next">Initializing the Multidimensional Solver</a>, Up: <a href="Multidimensional-Root_002dFinding.html#Multidimensional-Root_002dFinding" accesskey="u" rel="up">Multidimensional Root-Finding</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Overview-2"></a>
<h3 class="section">35.1 Overview</h3>
<a name="index-multidimensional-root-finding_002c-overview"></a>
<p>The problem of multidimensional root finding requires the simultaneous
solution of <em>n</em> equations, <em>f_i</em>, in <em>n</em> variables,
<em>x_i</em>,
In general there are no bracketing methods available for <em>n</em>
dimensional systems, and no way of knowing whether any solutions
exist. All algorithms proceed from an initial guess using a variant of
the Newton iteration,
where <em>x</em>, <em>f</em> are vector quantities and <em>J</em> is the
Jacobian matrix <em>J_{ij} = d f_i / d x_j</em>.
Additional strategies can be used to enlarge the region of
convergence. These include requiring a decrease in the norm <em>|f|</em> on
each step proposed by Newton’s method, or taking steepest-descent steps in
the direction of the negative gradient of <em>|f|</em>.
</p>
<p>Several root-finding algorithms are available within a single framework.
The user provides a high-level driver for the algorithms, and the
library provides the individual functions necessary for each of the
steps. There are three main phases of the iteration. The steps are,
</p>
<ul>
<li> initialize solver state, <var>s</var>, for algorithm <var>T</var>
</li><li> update <var>s</var> using the iteration <var>T</var>
</li><li> test <var>s</var> for convergence, and repeat iteration if necessary
</li></ul>
<p>The evaluation of the Jacobian matrix can be problematic, either because
programming the derivatives is intractable or because computation of the
<em>n^2</em> terms of the matrix becomes too expensive. For these reasons
the algorithms provided by the library are divided into two classes according
to whether the derivatives are available or not.
</p>
<a name="index-Jacobian-matrix_002c-root-finding"></a>
<p>The state for solvers with an analytic Jacobian matrix is held in a
<code>gsl_multiroot_fdfsolver</code> struct. The updating procedure requires
both the function and its derivatives to be supplied by the user.
</p>
<p>The state for solvers which do not use an analytic Jacobian matrix is
held in a <code>gsl_multiroot_fsolver</code> struct. The updating procedure
uses only function evaluations (not derivatives). The algorithms
estimate the matrix <em>J</em> or <em>J^{-1}</em> by approximate methods.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Initializing-the-Multidimensional-Solver.html#Initializing-the-Multidimensional-Solver" accesskey="n" rel="next">Initializing the Multidimensional Solver</a>, Up: <a href="Multidimensional-Root_002dFinding.html#Multidimensional-Root_002dFinding" accesskey="u" rel="up">Multidimensional Root-Finding</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|