File: Permutations.html

package info (click to toggle)
gsl-ref-html 1.16-1
  • links: PTS
  • area: non-free
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 5,816 kB
  • ctags: 4,130
  • sloc: makefile: 35
file content (113 lines) | stat: -rw-r--r-- 6,556 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts.  A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Permutations</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Permutations">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Permutations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="index.html#Top" rel="up" title="Top">
<link href="The-Permutation-struct.html#The-Permutation-struct" rel="next" title="The Permutation struct">
<link href="Vector-and-Matrix-References-and-Further-Reading.html#Vector-and-Matrix-References-and-Further-Reading" rel="previous" title="Vector and Matrix References and Further Reading">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Permutations"></a>
<div class="header">
<p>
Next: <a href="Combinations.html#Combinations" accesskey="n" rel="next">Combinations</a>, Previous: <a href="Vectors-and-Matrices.html#Vectors-and-Matrices" accesskey="p" rel="previous">Vectors and Matrices</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Permutations-1"></a>
<h2 class="chapter">9 Permutations</h2>
<a name="index-permutations"></a>

<p>This chapter describes functions for creating and manipulating
permutations. A permutation <em>p</em> is represented by an array of
<em>n</em> integers in the range 0 to <em>n-1</em>, where each value
<em>p_i</em> occurs once and only once.  The application of a permutation
<em>p</em> to a vector <em>v</em> yields a new vector <em>v'</em> where
<em>v'_i = v_{p_i}</em>. 
For example, the array <em>(0,1,3,2)</em> represents a permutation
which exchanges the last two elements of a four element vector.
The corresponding identity permutation is <em>(0,1,2,3)</em>.   
</p>
<p>Note that the permutations produced by the linear algebra routines
correspond to the exchange of matrix columns, and so should be considered
as applying to row-vectors in the form <em>v' = v P</em> rather than
column-vectors, when permuting the elements of a vector.
</p>
<p>The functions described in this chapter are defined in the header file
<samp>gsl_permutation.h</samp>.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="The-Permutation-struct.html#The-Permutation-struct" accesskey="1">The Permutation struct</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Permutation-allocation.html#Permutation-allocation" accesskey="2">Permutation allocation</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Accessing-permutation-elements.html#Accessing-permutation-elements" accesskey="3">Accessing permutation elements</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Permutation-properties.html#Permutation-properties" accesskey="4">Permutation properties</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Permutation-functions.html#Permutation-functions" accesskey="5">Permutation functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Applying-Permutations.html#Applying-Permutations" accesskey="6">Applying Permutations</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Reading-and-writing-permutations.html#Reading-and-writing-permutations" accesskey="7">Reading and writing permutations</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Permutations-in-cyclic-form.html#Permutations-in-cyclic-form" accesskey="8">Permutations in cyclic form</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Permutation-Examples.html#Permutation-Examples" accesskey="9">Permutation Examples</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="Permutation-References-and-Further-Reading.html#Permutation-References-and-Further-Reading">Permutation References and Further Reading</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>




</body>
</html>