1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: QR Decomposition</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: QR Decomposition">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: QR Decomposition">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Linear-Algebra.html#Linear-Algebra" rel="up" title="Linear Algebra">
<link href="QR-Decomposition-with-Column-Pivoting.html#QR-Decomposition-with-Column-Pivoting" rel="next" title="QR Decomposition with Column Pivoting">
<link href="LU-Decomposition.html#LU-Decomposition" rel="previous" title="LU Decomposition">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="QR-Decomposition"></a>
<div class="header">
<p>
Next: <a href="QR-Decomposition-with-Column-Pivoting.html#QR-Decomposition-with-Column-Pivoting" accesskey="n" rel="next">QR Decomposition with Column Pivoting</a>, Previous: <a href="LU-Decomposition.html#LU-Decomposition" accesskey="p" rel="previous">LU Decomposition</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="QR-Decomposition-1"></a>
<h3 class="section">14.2 QR Decomposition</h3>
<a name="index-QR-decomposition"></a>
<p>A general rectangular <em>M</em>-by-<em>N</em> matrix <em>A</em> has a
<em>QR</em> decomposition into the product of an orthogonal
<em>M</em>-by-<em>M</em> square matrix <em>Q</em> (where <em>Q^T Q = I</em>) and
an <em>M</em>-by-<em>N</em> right-triangular matrix <em>R</em>,
This decomposition can be used to convert the linear system <em>A x =
b</em> into the triangular system <em>R x = Q^T b</em>, which can be solved by
back-substitution. Another use of the <em>QR</em> decomposition is to
compute an orthonormal basis for a set of vectors. The first <em>N</em>
columns of <em>Q</em> form an orthonormal basis for the range of <em>A</em>,
<em>ran(A)</em>, when <em>A</em> has full column rank.
</p>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fdecomp"></a>Function: <em>int</em> <strong>gsl_linalg_QR_decomp</strong> <em>(gsl_matrix * <var>A</var>, gsl_vector * <var>tau</var>)</em></dt>
<dd><p>This function factorizes the <em>M</em>-by-<em>N</em> matrix <var>A</var> into
the <em>QR</em> decomposition <em>A = Q R</em>. On output the diagonal and
upper triangular part of the input matrix contain the matrix
<em>R</em>. The vector <var>tau</var> and the columns of the lower triangular
part of the matrix <var>A</var> contain the Householder coefficients and
Householder vectors which encode the orthogonal matrix <var>Q</var>. The
vector <var>tau</var> must be of length <em>k=\min(M,N)</em>. The matrix
<em>Q</em> is related to these components by, <em>Q = Q_k ... Q_2 Q_1</em>
where <em>Q_i = I - \tau_i v_i v_i^T</em> and <em>v_i</em> is the
Householder vector <em>v_i =
(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))</em>. This is the same storage scheme
as used by <small>LAPACK</small>.
</p>
<p>The algorithm used to perform the decomposition is Householder QR (Golub
& Van Loan, <cite>Matrix Computations</cite>, Algorithm 5.2.1).
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fsolve"></a>Function: <em>int</em> <strong>gsl_linalg_QR_solve</strong> <em>(const gsl_matrix * <var>QR</var>, const gsl_vector * <var>tau</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the square system <em>A x = b</em> using the <em>QR</em>
decomposition of <em>A</em> held in (<var>QR</var>, <var>tau</var>) which must
have been computed previously with <code>gsl_linalg_QR_decomp</code>.
The least-squares solution for
rectangular systems can be found using <code>gsl_linalg_QR_lssolve</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fsvx"></a>Function: <em>int</em> <strong>gsl_linalg_QR_svx</strong> <em>(const gsl_matrix * <var>QR</var>, const gsl_vector * <var>tau</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the square system <em>A x = b</em> in-place using
the <em>QR</em> decomposition of <em>A</em> held in (<var>QR</var>,<var>tau</var>)
which must have been computed previously by
<code>gsl_linalg_QR_decomp</code>. On input <var>x</var> should contain the
right-hand side <em>b</em>, which is replaced by the solution on output.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005flssolve"></a>Function: <em>int</em> <strong>gsl_linalg_QR_lssolve</strong> <em>(const gsl_matrix * <var>QR</var>, const gsl_vector * <var>tau</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>, gsl_vector * <var>residual</var>)</em></dt>
<dd><p>This function finds the least squares solution to the overdetermined
system <em>A x = b</em> where the matrix <var>A</var> has more rows than
columns. The least squares solution minimizes the Euclidean norm of the
residual, <em>||Ax - b||</em>.The routine requires as input
the <em>QR</em> decomposition
of <em>A</em> into (<var>QR</var>, <var>tau</var>) given by
<code>gsl_linalg_QR_decomp</code>. The solution is returned in <var>x</var>. The
residual is computed as a by-product and stored in <var>residual</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fQTvec"></a>Function: <em>int</em> <strong>gsl_linalg_QR_QTvec</strong> <em>(const gsl_matrix * <var>QR</var>, const gsl_vector * <var>tau</var>, gsl_vector * <var>v</var>)</em></dt>
<dd><p>This function applies the matrix <em>Q^T</em> encoded in the decomposition
(<var>QR</var>,<var>tau</var>) to the vector <var>v</var>, storing the result <em>Q^T
v</em> in <var>v</var>. The matrix multiplication is carried out directly using
the encoding of the Householder vectors without needing to form the full
matrix <em>Q^T</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fQvec"></a>Function: <em>int</em> <strong>gsl_linalg_QR_Qvec</strong> <em>(const gsl_matrix * <var>QR</var>, const gsl_vector * <var>tau</var>, gsl_vector * <var>v</var>)</em></dt>
<dd><p>This function applies the matrix <em>Q</em> encoded in the decomposition
(<var>QR</var>,<var>tau</var>) to the vector <var>v</var>, storing the result <em>Q
v</em> in <var>v</var>. The matrix multiplication is carried out directly using
the encoding of the Householder vectors without needing to form the full
matrix <em>Q</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fQTmat"></a>Function: <em>int</em> <strong>gsl_linalg_QR_QTmat</strong> <em>(const gsl_matrix * <var>QR</var>, const gsl_vector * <var>tau</var>, gsl_matrix * <var>A</var>)</em></dt>
<dd><p>This function applies the matrix <em>Q^T</em> encoded in the decomposition
(<var>QR</var>,<var>tau</var>) to the matrix <var>A</var>, storing the result <em>Q^T
A</em> in <var>A</var>. The matrix multiplication is carried out directly using
the encoding of the Householder vectors without needing to form the full
matrix <em>Q^T</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fRsolve"></a>Function: <em>int</em> <strong>gsl_linalg_QR_Rsolve</strong> <em>(const gsl_matrix * <var>QR</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the triangular system <em>R x = b</em> for
<var>x</var>. It may be useful if the product <em>b' = Q^T b</em> has already
been computed using <code>gsl_linalg_QR_QTvec</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fRsvx"></a>Function: <em>int</em> <strong>gsl_linalg_QR_Rsvx</strong> <em>(const gsl_matrix * <var>QR</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the triangular system <em>R x = b</em> for <var>x</var>
in-place. On input <var>x</var> should contain the right-hand side <em>b</em>
and is replaced by the solution on output. This function may be useful if
the product <em>b' = Q^T b</em> has already been computed using
<code>gsl_linalg_QR_QTvec</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005funpack"></a>Function: <em>int</em> <strong>gsl_linalg_QR_unpack</strong> <em>(const gsl_matrix * <var>QR</var>, const gsl_vector * <var>tau</var>, gsl_matrix * <var>Q</var>, gsl_matrix * <var>R</var>)</em></dt>
<dd><p>This function unpacks the encoded <em>QR</em> decomposition
(<var>QR</var>,<var>tau</var>) into the matrices <var>Q</var> and <var>R</var>, where
<var>Q</var> is <em>M</em>-by-<em>M</em> and <var>R</var> is <em>M</em>-by-<em>N</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fQRsolve"></a>Function: <em>int</em> <strong>gsl_linalg_QR_QRsolve</strong> <em>(gsl_matrix * <var>Q</var>, gsl_matrix * <var>R</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the system <em>R x = Q^T b</em> for <var>x</var>. It can
be used when the <em>QR</em> decomposition of a matrix is available in
unpacked form as (<var>Q</var>, <var>R</var>).
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fQR_005fupdate"></a>Function: <em>int</em> <strong>gsl_linalg_QR_update</strong> <em>(gsl_matrix * <var>Q</var>, gsl_matrix * <var>R</var>, gsl_vector * <var>w</var>, const gsl_vector * <var>v</var>)</em></dt>
<dd><p>This function performs a rank-1 update <em>w v^T</em> of the <em>QR</em>
decomposition (<var>Q</var>, <var>R</var>). The update is given by <em>Q'R' = Q
(R + w v^T)</em> where the output matrices <em>Q'</em> and <em>R'</em> are also
orthogonal and right triangular. Note that <var>w</var> is destroyed by the
update.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fR_005fsolve"></a>Function: <em>int</em> <strong>gsl_linalg_R_solve</strong> <em>(const gsl_matrix * <var>R</var>, const gsl_vector * <var>b</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the triangular system <em>R x = b</em> for the
<em>N</em>-by-<em>N</em> matrix <var>R</var>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005flinalg_005fR_005fsvx"></a>Function: <em>int</em> <strong>gsl_linalg_R_svx</strong> <em>(const gsl_matrix * <var>R</var>, gsl_vector * <var>x</var>)</em></dt>
<dd><p>This function solves the triangular system <em>R x = b</em> in-place. On
input <var>x</var> should contain the right-hand side <em>b</em>, which is
replaced by the solution on output.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="QR-Decomposition-with-Column-Pivoting.html#QR-Decomposition-with-Column-Pivoting" accesskey="n" rel="next">QR Decomposition with Column Pivoting</a>, Previous: <a href="LU-Decomposition.html#LU-Decomposition" accesskey="p" rel="previous">LU Decomposition</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|