File: Real-Symmetric-Matrices.html

package info (click to toggle)
gsl-ref-html 1.16-1
  • links: PTS
  • area: non-free
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 5,816 kB
  • ctags: 4,130
  • sloc: makefile: 35
file content (134 lines) | stat: -rw-r--r-- 7,041 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts.  A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Real Symmetric Matrices</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Real Symmetric Matrices">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Real Symmetric Matrices">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Eigensystems.html#Eigensystems" rel="up" title="Eigensystems">
<link href="Complex-Hermitian-Matrices.html#Complex-Hermitian-Matrices" rel="next" title="Complex Hermitian Matrices">
<link href="Eigensystems.html#Eigensystems" rel="previous" title="Eigensystems">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Real-Symmetric-Matrices"></a>
<div class="header">
<p>
Next: <a href="Complex-Hermitian-Matrices.html#Complex-Hermitian-Matrices" accesskey="n" rel="next">Complex Hermitian Matrices</a>, Up: <a href="Eigensystems.html#Eigensystems" accesskey="u" rel="up">Eigensystems</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Real-Symmetric-Matrices-1"></a>
<h3 class="section">15.1 Real Symmetric Matrices</h3>
<a name="index-symmetric-matrix_002c-real_002c-eigensystem"></a>
<a name="index-real-symmetric-matrix_002c-eigensystem"></a>

<p>For real symmetric matrices, the library uses the symmetric
bidiagonalization and QR reduction method.  This is described in Golub
&amp; van Loan, section 8.3.  The computed eigenvalues are accurate to an
absolute accuracy of <em>\epsilon ||A||_2</em>, where <em>\epsilon</em> is
the machine precision.
</p>
<dl>
<dt><a name="index-gsl_005feigen_005fsymm_005falloc"></a>Function: <em>gsl_eigen_symm_workspace *</em> <strong>gsl_eigen_symm_alloc</strong> <em>(const size_t <var>n</var>)</em></dt>
<dd><a name="index-gsl_005feigen_005fsymm_005fworkspace"></a>
<p>This function allocates a workspace for computing eigenvalues of
<var>n</var>-by-<var>n</var> real symmetric matrices.  The size of the workspace
is <em>O(2n)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005feigen_005fsymm_005ffree"></a>Function: <em>void</em> <strong>gsl_eigen_symm_free</strong> <em>(gsl_eigen_symm_workspace * <var>w</var>)</em></dt>
<dd><p>This function frees the memory associated with the workspace <var>w</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005feigen_005fsymm"></a>Function: <em>int</em> <strong>gsl_eigen_symm</strong> <em>(gsl_matrix * <var>A</var>, gsl_vector * <var>eval</var>, gsl_eigen_symm_workspace * <var>w</var>)</em></dt>
<dd><p>This function computes the eigenvalues of the real symmetric matrix
<var>A</var>.  Additional workspace of the appropriate size must be provided
in <var>w</var>.  The diagonal and lower triangular part of <var>A</var> are
destroyed during the computation, but the strict upper triangular part
is not referenced.  The eigenvalues are stored in the vector <var>eval</var>
and are unordered.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005feigen_005fsymmv_005falloc"></a>Function: <em>gsl_eigen_symmv_workspace *</em> <strong>gsl_eigen_symmv_alloc</strong> <em>(const size_t <var>n</var>)</em></dt>
<dd><a name="index-gsl_005feigen_005fsymmv_005fworkspace"></a>
<p>This function allocates a workspace for computing eigenvalues and
eigenvectors of <var>n</var>-by-<var>n</var> real symmetric matrices.  The size of
the workspace is <em>O(4n)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005feigen_005fsymmv_005ffree"></a>Function: <em>void</em> <strong>gsl_eigen_symmv_free</strong> <em>(gsl_eigen_symmv_workspace * <var>w</var>)</em></dt>
<dd><p>This function frees the memory associated with the workspace <var>w</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005feigen_005fsymmv"></a>Function: <em>int</em> <strong>gsl_eigen_symmv</strong> <em>(gsl_matrix * <var>A</var>, gsl_vector * <var>eval</var>, gsl_matrix * <var>evec</var>, gsl_eigen_symmv_workspace * <var>w</var>)</em></dt>
<dd><p>This function computes the eigenvalues and eigenvectors of the real
symmetric matrix <var>A</var>.  Additional workspace of the appropriate size
must be provided in <var>w</var>.  The diagonal and lower triangular part of
<var>A</var> are destroyed during the computation, but the strict upper
triangular part is not referenced.  The eigenvalues are stored in the
vector <var>eval</var> and are unordered.  The corresponding eigenvectors are
stored in the columns of the matrix <var>evec</var>.  For example, the
eigenvector in the first column corresponds to the first eigenvalue.
The eigenvectors are guaranteed to be mutually orthogonal and normalised
to unit magnitude.
</p></dd></dl>

<hr>
<div class="header">
<p>
Next: <a href="Complex-Hermitian-Matrices.html#Complex-Hermitian-Matrices" accesskey="n" rel="next">Complex Hermitian Matrices</a>, Up: <a href="Eigensystems.html#Eigensystems" accesskey="u" rel="up">Eigensystems</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>