1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Regular Spherical Bessel Functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Regular Spherical Bessel Functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Regular Spherical Bessel Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Bessel-Functions.html#Bessel-Functions" rel="up" title="Bessel Functions">
<link href="Irregular-Spherical-Bessel-Functions.html#Irregular-Spherical-Bessel-Functions" rel="next" title="Irregular Spherical Bessel Functions">
<link href="Irregular-Modified-Cylindrical-Bessel-Functions.html#Irregular-Modified-Cylindrical-Bessel-Functions" rel="previous" title="Irregular Modified Cylindrical Bessel Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Regular-Spherical-Bessel-Functions"></a>
<div class="header">
<p>
Next: <a href="Irregular-Spherical-Bessel-Functions.html#Irregular-Spherical-Bessel-Functions" accesskey="n" rel="next">Irregular Spherical Bessel Functions</a>, Previous: <a href="Irregular-Modified-Cylindrical-Bessel-Functions.html#Irregular-Modified-Cylindrical-Bessel-Functions" accesskey="p" rel="previous">Irregular Modified Cylindrical Bessel Functions</a>, Up: <a href="Bessel-Functions.html#Bessel-Functions" accesskey="u" rel="up">Bessel Functions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Regular-Spherical-Bessel-Functions-1"></a>
<h4 class="subsection">7.5.5 Regular Spherical Bessel Functions</h4>
<a name="index-Spherical-Bessel-Functions"></a>
<a name="index-Regular-Spherical-Bessel-Functions"></a>
<a name="index-j_0028x_0029_002c-Bessel-Functions"></a>
<dl>
<dt><a name="index-gsl_005fsf_005fbessel_005fj0"></a>Function: <em>double</em> <strong>gsl_sf_bessel_j0</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fbessel_005fj0_005fe"></a>Function: <em>int</em> <strong>gsl_sf_bessel_j0_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the regular spherical Bessel function of zeroth
order, <em>j_0(x) = \sin(x)/x</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fbessel_005fj1"></a>Function: <em>double</em> <strong>gsl_sf_bessel_j1</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fbessel_005fj1_005fe"></a>Function: <em>int</em> <strong>gsl_sf_bessel_j1_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the regular spherical Bessel function of first
order, <em>j_1(x) = (\sin(x)/x - \cos(x))/x</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fbessel_005fj2"></a>Function: <em>double</em> <strong>gsl_sf_bessel_j2</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fbessel_005fj2_005fe"></a>Function: <em>int</em> <strong>gsl_sf_bessel_j2_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the regular spherical Bessel function of second
order, <em>j_2(x) = ((3/x^2 - 1)\sin(x) - 3\cos(x)/x)/x</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fbessel_005fjl"></a>Function: <em>double</em> <strong>gsl_sf_bessel_jl</strong> <em>(int <var>l</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fbessel_005fjl_005fe"></a>Function: <em>int</em> <strong>gsl_sf_bessel_jl_e</strong> <em>(int <var>l</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the regular spherical Bessel function of
order <var>l</var>, <em>j_l(x)</em>, for <em>l >= 0</em> and <em>x >= 0</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fbessel_005fjl_005farray"></a>Function: <em>int</em> <strong>gsl_sf_bessel_jl_array</strong> <em>(int <var>lmax</var>, double <var>x</var>, double <var>result_array</var>[])</em></dt>
<dd><p>This routine computes the values of the regular spherical Bessel
functions <em>j_l(x)</em> for <em>l</em> from 0 to <var>lmax</var>
inclusive for <em>lmax >= 0</em> and <em>x >= 0</em>, storing the results in the array <var>result_array</var>.
The values are computed using recurrence relations for
efficiency, and therefore may differ slightly from the exact values.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fbessel_005fjl_005fsteed_005farray"></a>Function: <em>int</em> <strong>gsl_sf_bessel_jl_steed_array</strong> <em>(int <var>lmax</var>, double <var>x</var>, double * <var>result_array</var>)</em></dt>
<dd><p>This routine uses Steed’s method to compute the values of the regular
spherical Bessel functions <em>j_l(x)</em> for <em>l</em> from 0 to
<var>lmax</var> inclusive for <em>lmax >= 0</em> and <em>x >= 0</em>, storing the results in the array
<var>result_array</var>.
The Steed/Barnett algorithm is described in <cite>Comp. Phys. Comm.</cite> 21,
297 (1981). Steed’s method is more stable than the
recurrence used in the other functions but is also slower.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Irregular-Spherical-Bessel-Functions.html#Irregular-Spherical-Bessel-Functions" accesskey="n" rel="next">Irregular Spherical Bessel Functions</a>, Previous: <a href="Irregular-Modified-Cylindrical-Bessel-Functions.html#Irregular-Modified-Cylindrical-Bessel-Functions" accesskey="p" rel="previous">Irregular Modified Cylindrical Bessel Functions</a>, Up: <a href="Bessel-Functions.html#Bessel-Functions" accesskey="u" rel="up">Bessel Functions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|