1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Root Finding Overview</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Root Finding Overview">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Root Finding Overview">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="One-dimensional-Root_002dFinding.html#One-dimensional-Root_002dFinding" rel="up" title="One dimensional Root-Finding">
<link href="Root-Finding-Caveats.html#Root-Finding-Caveats" rel="next" title="Root Finding Caveats">
<link href="One-dimensional-Root_002dFinding.html#One-dimensional-Root_002dFinding" rel="previous" title="One dimensional Root-Finding">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Root-Finding-Overview"></a>
<div class="header">
<p>
Next: <a href="Root-Finding-Caveats.html#Root-Finding-Caveats" accesskey="n" rel="next">Root Finding Caveats</a>, Up: <a href="One-dimensional-Root_002dFinding.html#One-dimensional-Root_002dFinding" accesskey="u" rel="up">One dimensional Root-Finding</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Overview"></a>
<h3 class="section">33.1 Overview</h3>
<a name="index-root-finding_002c-overview"></a>
<p>One-dimensional root finding algorithms can be divided into two classes,
<em>root bracketing</em> and <em>root polishing</em>. Algorithms which proceed
by bracketing a root are guaranteed to converge. Bracketing algorithms
begin with a bounded region known to contain a root. The size of this
bounded region is reduced, iteratively, until it encloses the root to a
desired tolerance. This provides a rigorous error estimate for the
location of the root.
</p>
<p>The technique of <em>root polishing</em> attempts to improve an initial
guess to the root. These algorithms converge only if started “close
enough” to a root, and sacrifice a rigorous error bound for speed. By
approximating the behavior of a function in the vicinity of a root they
attempt to find a higher order improvement of an initial guess. When the
behavior of the function is compatible with the algorithm and a good
initial guess is available a polishing algorithm can provide rapid
convergence.
</p>
<p>In GSL both types of algorithm are available in similar frameworks. The
user provides a high-level driver for the algorithms, and the library
provides the individual functions necessary for each of the steps.
There are three main phases of the iteration. The steps are,
</p>
<ul>
<li> initialize solver state, <var>s</var>, for algorithm <var>T</var>
</li><li> update <var>s</var> using the iteration <var>T</var>
</li><li> test <var>s</var> for convergence, and repeat iteration if necessary
</li></ul>
<p>The state for bracketing solvers is held in a <code>gsl_root_fsolver</code>
struct. The updating procedure uses only function evaluations (not
derivatives). The state for root polishing solvers is held in a
<code>gsl_root_fdfsolver</code> struct. The updates require both the function
and its derivative (hence the name <code>fdf</code>) to be supplied by the
user.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Root-Finding-Caveats.html#Root-Finding-Caveats" accesskey="n" rel="next">Root Finding Caveats</a>, Up: <a href="One-dimensional-Root_002dFinding.html#One-dimensional-Root_002dFinding" accesskey="u" rel="up">One dimensional Root-Finding</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|