File: The-Gaussian-Distribution.html

package info (click to toggle)
gsl-ref-html 1.16-1
  • links: PTS
  • area: non-free
  • in suites: jessie, jessie-kfreebsd, stretch
  • size: 5,816 kB
  • ctags: 4,130
  • sloc: makefile: 35
file content (135 lines) | stat: -rw-r--r-- 8,485 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections and no cover texts.  A copy of the license is
included in the section entitled "GNU Free Documentation License". -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: The Gaussian Distribution</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: The Gaussian Distribution">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: The Gaussian Distribution">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Random-Number-Distributions.html#Random-Number-Distributions" rel="up" title="Random Number Distributions">
<link href="The-Gaussian-Tail-Distribution.html#The-Gaussian-Tail-Distribution" rel="next" title="The Gaussian Tail Distribution">
<link href="Random-Number-Distribution-Introduction.html#Random-Number-Distribution-Introduction" rel="previous" title="Random Number Distribution Introduction">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="The-Gaussian-Distribution"></a>
<div class="header">
<p>
Next: <a href="The-Gaussian-Tail-Distribution.html#The-Gaussian-Tail-Distribution" accesskey="n" rel="next">The Gaussian Tail Distribution</a>, Previous: <a href="Random-Number-Distribution-Introduction.html#Random-Number-Distribution-Introduction" accesskey="p" rel="previous">Random Number Distribution Introduction</a>, Up: <a href="Random-Number-Distributions.html#Random-Number-Distributions" accesskey="u" rel="up">Random Number Distributions</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="The-Gaussian-Distribution-1"></a>
<h3 class="section">20.2 The Gaussian Distribution</h3>
<dl>
<dt><a name="index-gsl_005fran_005fgaussian"></a>Function: <em>double</em> <strong>gsl_ran_gaussian</strong> <em>(const gsl_rng * <var>r</var>, double <var>sigma</var>)</em></dt>
<dd><a name="index-Gaussian-distribution"></a>
<p>This function returns a Gaussian random variate, with mean zero and
standard deviation <var>sigma</var>.  The probability distribution for
Gaussian random variates is,
for <em>x</em> in the range <em>-\infty</em> to <em>+\infty</em>.  Use the
transformation <em>z = \mu + x</em> on the numbers returned by
<code>gsl_ran_gaussian</code> to obtain a Gaussian distribution with mean
<em>\mu</em>.  This function uses the Box-Muller algorithm which requires two
calls to the random number generator <var>r</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fran_005fgaussian_005fpdf"></a>Function: <em>double</em> <strong>gsl_ran_gaussian_pdf</strong> <em>(double <var>x</var>, double <var>sigma</var>)</em></dt>
<dd><p>This function computes the probability density <em>p(x)</em> at <var>x</var>
for a Gaussian distribution with standard deviation <var>sigma</var>, using
the formula given above.
</p></dd></dl>

<br>

<dl>
<dt><a name="index-gsl_005fran_005fgaussian_005fziggurat"></a>Function: <em>double</em> <strong>gsl_ran_gaussian_ziggurat</strong> <em>(const gsl_rng * <var>r</var>, double <var>sigma</var>)</em></dt>
<dt><a name="index-gsl_005fran_005fgaussian_005fratio_005fmethod"></a>Function: <em>double</em> <strong>gsl_ran_gaussian_ratio_method</strong> <em>(const gsl_rng * <var>r</var>, double <var>sigma</var>)</em></dt>
<dd><a name="index-Ziggurat-method"></a>
<p>This function computes a Gaussian random variate using the alternative
Marsaglia-Tsang ziggurat and Kinderman-Monahan-Leva ratio methods.  The
Ziggurat algorithm is the fastest available algorithm in most cases.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fran_005fugaussian"></a>Function: <em>double</em> <strong>gsl_ran_ugaussian</strong> <em>(const gsl_rng * <var>r</var>)</em></dt>
<dt><a name="index-gsl_005fran_005fugaussian_005fpdf"></a>Function: <em>double</em> <strong>gsl_ran_ugaussian_pdf</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fran_005fugaussian_005fratio_005fmethod"></a>Function: <em>double</em> <strong>gsl_ran_ugaussian_ratio_method</strong> <em>(const gsl_rng * <var>r</var>)</em></dt>
<dd><p>These functions compute results for the unit Gaussian distribution.  They
are equivalent to the functions above with a standard deviation of one,
<var>sigma</var> = 1.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcdf_005fgaussian_005fP"></a>Function: <em>double</em> <strong>gsl_cdf_gaussian_P</strong> <em>(double <var>x</var>, double <var>sigma</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fgaussian_005fQ"></a>Function: <em>double</em> <strong>gsl_cdf_gaussian_Q</strong> <em>(double <var>x</var>, double <var>sigma</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fgaussian_005fPinv"></a>Function: <em>double</em> <strong>gsl_cdf_gaussian_Pinv</strong> <em>(double <var>P</var>, double <var>sigma</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fgaussian_005fQinv"></a>Function: <em>double</em> <strong>gsl_cdf_gaussian_Qinv</strong> <em>(double <var>Q</var>, double <var>sigma</var>)</em></dt>
<dd><p>These functions compute the cumulative distribution functions
<em>P(x)</em>, <em>Q(x)</em> and their inverses for the Gaussian
distribution with standard deviation <var>sigma</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcdf_005fugaussian_005fP"></a>Function: <em>double</em> <strong>gsl_cdf_ugaussian_P</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fugaussian_005fQ"></a>Function: <em>double</em> <strong>gsl_cdf_ugaussian_Q</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fugaussian_005fPinv"></a>Function: <em>double</em> <strong>gsl_cdf_ugaussian_Pinv</strong> <em>(double <var>P</var>)</em></dt>
<dt><a name="index-gsl_005fcdf_005fugaussian_005fQinv"></a>Function: <em>double</em> <strong>gsl_cdf_ugaussian_Qinv</strong> <em>(double <var>Q</var>)</em></dt>
<dd><p>These functions compute the cumulative distribution functions
<em>P(x)</em>, <em>Q(x)</em> and their inverses for the unit Gaussian
distribution.
</p></dd></dl>

<hr>
<div class="header">
<p>
Next: <a href="The-Gaussian-Tail-Distribution.html#The-Gaussian-Tail-Distribution" accesskey="n" rel="next">The Gaussian Tail Distribution</a>, Previous: <a href="Random-Number-Distribution-Introduction.html#Random-Number-Distribution-Introduction" accesskey="p" rel="previous">Random Number Distribution Introduction</a>, Up: <a href="Random-Number-Distributions.html#Random-Number-Distributions" accesskey="u" rel="up">Random Number Distributions</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>