File: gsl-ref_13.html

package info (click to toggle)
gsl-ref-html 1.6-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 1,504 kB
  • ctags: 3,558
  • sloc: makefile: 36
file content (1246 lines) | stat: -rw-r--r-- 43,773 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.54+ (gsl)
     from ../gsl-ref.texi -->

<TITLE>GNU Scientific Library -- Reference Manual - Linear Algebra</TITLE>
<!-- <LINK rel="stylesheet" title="Default Style Sheet" href="/css/texinfo.css" type="text/css"> -->
<link href="gsl-ref_14.html" rel=Next>
<link href="gsl-ref_12.html" rel=Previous>
<link href="gsl-ref_toc.html" rel=ToC>

</HEAD>
<BODY>
<p>Go to the <A HREF="gsl-ref_1.html">first</A>, <A HREF="gsl-ref_12.html">previous</A>, <A HREF="gsl-ref_14.html">next</A>, <A HREF="gsl-ref_50.html">last</A> section, <A HREF="gsl-ref_toc.html">table of contents</A>.
<P><HR><P>


<H1><A NAME="SEC219" HREF="gsl-ref_toc.html#TOC219">Linear Algebra</A></H1>
<P>
<A NAME="IDX1169"></A>
<A NAME="IDX1170"></A>
<A NAME="IDX1171"></A>
<A NAME="IDX1172"></A>

</P>
<P>
This chapter describes functions for solving linear systems.  The
library provides simple linear algebra operations which operate directly
on the <CODE>gsl_vector</CODE> and <CODE>gsl_matrix</CODE> objects.  These are
intended for use with "small" systems where simple algorithms are
acceptable.

</P>
<P>
<A NAME="IDX1173"></A>
Anyone interested in large systems will want to use the sophisticated
routines found in LAPACK. The Fortran version of LAPACK is
recommended as the standard package for linear algebra.  It supports
blocked algorithms, specialized data representations and other
optimizations.

</P>
<P>
The functions described in this chapter are declared in the header file
<TT>'gsl_linalg.h'</TT>.

</P>



<H2><A NAME="SEC220" HREF="gsl-ref_toc.html#TOC220">LU Decomposition</A></H2>
<P>
<A NAME="IDX1174"></A>

</P>
<P>
A general square matrix A has an LU decomposition into
upper and lower triangular matrices,

</P>

<PRE class="example">
P A = L U
</PRE>

<P>
where P is a permutation matrix, L is unit lower
triangular matrix and U is upper triangular matrix. For square
matrices this decomposition can be used to convert the linear system
A x = b into a pair of triangular systems (L y = P b,
U x = y), which can be solved by forward and back-substitution.
Note that the LU decomposition is valid for singular matrices.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_LU_decomp</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_permutation * <VAR>p</VAR>, int *<VAR>signum</VAR>)</I>
<DD><A NAME="IDX1175"></A>
<DT><U>Function:</U> int <B>gsl_linalg_complex_LU_decomp</B> <I>(gsl_matrix_complex * <VAR>A</VAR>, gsl_permutation * <VAR>p</VAR>, int *<VAR>signum</VAR>)</I>
<DD><A NAME="IDX1176"></A>
These functions factorize the square matrix <VAR>A</VAR> into the LU
decomposition PA = LU.  On output the diagonal and upper
triangular part of the input matrix <VAR>A</VAR> contain the matrix
U. The lower triangular part of the input matrix (excluding the
diagonal) contains L.  The diagonal elements of L are
unity, and are not stored.

</P>
<P>
The permutation matrix P is encoded in the permutation
<VAR>p</VAR>. The j-th column of the matrix P is given by the
k-th column of the identity matrix, where k = p_j the
j-th element of the permutation vector. The sign of the
permutation is given by <VAR>signum</VAR>. It has the value (-1)^n,
where n is the number of interchanges in the permutation.

</P>
<P>
The algorithm used in the decomposition is Gaussian Elimination with
partial pivoting (Golub &#38; Van Loan, <CITE>Matrix Computations</CITE>,
Algorithm 3.4.1).
</DL>

</P>
<P>
<A NAME="IDX1177"></A>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_LU_solve</B> <I>(const gsl_matrix * <VAR>LU</VAR>, const gsl_permutation * <VAR>p</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1178"></A>
<DT><U>Function:</U> int <B>gsl_linalg_complex_LU_solve</B> <I>(const gsl_matrix_complex * <VAR>LU</VAR>, const gsl_permutation * <VAR>p</VAR>, const gsl_vector_complex * <VAR>b</VAR>, gsl_vector_complex * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1179"></A>
These functions solve the system A x = b using the LU
decomposition of A into (<VAR>LU</VAR>, <VAR>p</VAR>) given by
<CODE>gsl_linalg_LU_decomp</CODE> or <CODE>gsl_linalg_complex_LU_decomp</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_LU_svx</B> <I>(const gsl_matrix * <VAR>LU</VAR>, const gsl_permutation * <VAR>p</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1180"></A>
<DT><U>Function:</U> int <B>gsl_linalg_complex_LU_svx</B> <I>(const gsl_matrix_complex * <VAR>LU</VAR>, const gsl_permutation * <VAR>p</VAR>, gsl_vector_complex * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1181"></A>
These functions solve the system A x = b in-place using the
LU decomposition of A into (<VAR>LU</VAR>,<VAR>p</VAR>). On input
<VAR>x</VAR> should contain the right-hand side b, which is replaced
by the solution on output.
</DL>

</P>
<P>
<A NAME="IDX1182"></A>
<A NAME="IDX1183"></A>
<A NAME="IDX1184"></A>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_LU_refine</B> <I>(const gsl_matrix * <VAR>A</VAR>, const gsl_matrix * <VAR>LU</VAR>, const gsl_permutation * <VAR>p</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>, gsl_vector * <VAR>residual</VAR>)</I>
<DD><A NAME="IDX1185"></A>
<DT><U>Function:</U> int <B>gsl_linalg_complex_LU_refine</B> <I>(const gsl_matrix_complex * <VAR>A</VAR>, const gsl_matrix_complex * <VAR>LU</VAR>, const gsl_permutation * <VAR>p</VAR>, const gsl_vector_complex * <VAR>b</VAR>, gsl_vector_complex * <VAR>x</VAR>, gsl_vector_complex * <VAR>residual</VAR>)</I>
<DD><A NAME="IDX1186"></A>
These functions apply an iterative improvement to <VAR>x</VAR>, the solution
of A x = b, using the LU decomposition of A into
(<VAR>LU</VAR>,<VAR>p</VAR>). The initial residual r = A x - b is also
computed and stored in <VAR>residual</VAR>.
</DL>

</P>
<P>
<A NAME="IDX1187"></A>
<A NAME="IDX1188"></A>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_LU_invert</B> <I>(const gsl_matrix * <VAR>LU</VAR>, const gsl_permutation * <VAR>p</VAR>, gsl_matrix * <VAR>inverse</VAR>)</I>
<DD><A NAME="IDX1189"></A>
<DT><U>Function:</U> int <B>gsl_linalg_complex_LU_invert</B> <I>(const gsl_matrix_complex * <VAR>LU</VAR>, const gsl_permutation * <VAR>p</VAR>, gsl_matrix_complex * <VAR>inverse</VAR>)</I>
<DD><A NAME="IDX1190"></A>
These functions compute the inverse of a matrix A from its
LU decomposition (<VAR>LU</VAR>,<VAR>p</VAR>), storing the result in the
matrix <VAR>inverse</VAR>. The inverse is computed by solving the system
A x = b for each column of the identity matrix.  It is preferable
to avoid direct computation of the inverse whenever possible.
</DL>

</P>
<P>
<A NAME="IDX1191"></A>
<A NAME="IDX1192"></A>
<DL>
<DT><U>Function:</U> double <B>gsl_linalg_LU_det</B> <I>(gsl_matrix * <VAR>LU</VAR>, int <VAR>signum</VAR>)</I>
<DD><A NAME="IDX1193"></A>
<DT><U>Function:</U> gsl_complex <B>gsl_linalg_complex_LU_det</B> <I>(gsl_matrix_complex * <VAR>LU</VAR>, int <VAR>signum</VAR>)</I>
<DD><A NAME="IDX1194"></A>
These functions compute the determinant of a matrix A from its
LU decomposition, <VAR>LU</VAR>. The determinant is computed as the
product of the diagonal elements of U and the sign of the row
permutation <VAR>signum</VAR>.
</DL>

</P>
<P>
<A NAME="IDX1195"></A>
<DL>
<DT><U>Function:</U> double <B>gsl_linalg_LU_lndet</B> <I>(gsl_matrix * <VAR>LU</VAR>)</I>
<DD><A NAME="IDX1196"></A>
<DT><U>Function:</U> double <B>gsl_linalg_complex_LU_lndet</B> <I>(gsl_matrix_complex * <VAR>LU</VAR>)</I>
<DD><A NAME="IDX1197"></A>
These functions compute the logarithm of the absolute value of the
determinant of a matrix A, \ln|det(A)|, from its LU
decomposition, <VAR>LU</VAR>.  This function may be useful if the direct
computation of the determinant would overflow or underflow.
</DL>

</P>
<P>
<A NAME="IDX1198"></A>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_LU_sgndet</B> <I>(gsl_matrix * <VAR>LU</VAR>, int <VAR>signum</VAR>)</I>
<DD><A NAME="IDX1199"></A>
<DT><U>Function:</U> gsl_complex <B>gsl_linalg_complex_LU_sgndet</B> <I>(gsl_matrix_complex * <VAR>LU</VAR>, int <VAR>signum</VAR>)</I>
<DD><A NAME="IDX1200"></A>
These functions compute the sign or phase factor of the determinant of a
matrix A, det(A)/|det(A)|, from its LU decomposition,
<VAR>LU</VAR>.
</DL>

</P>


<H2><A NAME="SEC221" HREF="gsl-ref_toc.html#TOC221">QR Decomposition</A></H2>
<P>
<A NAME="IDX1201"></A>

</P>
<P>
A general rectangular M-by-N matrix A has a
QR decomposition into the product of an orthogonal
M-by-M square matrix Q (where Q^T Q = I) and
an M-by-N right-triangular matrix R,

</P>

<PRE class="example">
A = Q R
</PRE>

<P>
This decomposition can be used to convert the linear system A x =
b into the triangular system R x = Q^T b, which can be solved by
back-substitution. Another use of the QR decomposition is to
compute an orthonormal basis for a set of vectors. The first N
columns of Q form an orthonormal basis for the range of A,
ran(A), when A has full column rank.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_decomp</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_vector * <VAR>tau</VAR>)</I>
<DD><A NAME="IDX1202"></A>
This function factorizes the M-by-N matrix <VAR>A</VAR> into
the QR decomposition A = Q R.  On output the diagonal and
upper triangular part of the input matrix contain the matrix
R. The vector <VAR>tau</VAR> and the columns of the lower triangular
part of the matrix <VAR>A</VAR> contain the Householder coefficients and
Householder vectors which encode the orthogonal matrix <VAR>Q</VAR>.  The
vector <VAR>tau</VAR> must be of length k=\min(M,N). The matrix
Q is related to these components by, Q = Q_k ... Q_2 Q_1
where Q_i = I - \tau_i v_i v_i^T and v_i is the
Householder vector v_i =
(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme
as used by LAPACK.

</P>
<P>
The algorithm used to perform the decomposition is Householder QR (Golub
&#38; Van Loan, <CITE>Matrix Computations</CITE>, Algorithm 5.2.1).
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_solve</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>tau</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1203"></A>
This function solves the system A x = b using the QR
decomposition of A into (<VAR>QR</VAR>, <VAR>tau</VAR>) given by
<CODE>gsl_linalg_QR_decomp</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_svx</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>tau</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1204"></A>
This function solves the system A x = b in-place using the
QR decomposition of A into (<VAR>QR</VAR>,<VAR>tau</VAR>) given by
<CODE>gsl_linalg_QR_decomp</CODE>. On input <VAR>x</VAR> should contain the
right-hand side b, which is replaced by the solution on output.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_lssolve</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>tau</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>, gsl_vector * <VAR>residual</VAR>)</I>
<DD><A NAME="IDX1205"></A>
This function finds the least squares solution to the overdetermined
system A x = b where the matrix <VAR>A</VAR> has more rows than
columns.  The least squares solution minimizes the Euclidean norm of the
residual, ||Ax - b||.The routine uses the QR decomposition
of A into (<VAR>QR</VAR>, <VAR>tau</VAR>) given by
<CODE>gsl_linalg_QR_decomp</CODE>.  The solution is returned in <VAR>x</VAR>.  The
residual is computed as a by-product and stored in <VAR>residual</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_QTvec</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>tau</VAR>, gsl_vector * <VAR>v</VAR>)</I>
<DD><A NAME="IDX1206"></A>
This function applies the matrix Q^T encoded in the decomposition
(<VAR>QR</VAR>,<VAR>tau</VAR>) to the vector <VAR>v</VAR>, storing the result Q^T
v in <VAR>v</VAR>.  The matrix multiplication is carried out directly using
the encoding of the Householder vectors without needing to form the full
matrix Q^T.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_Qvec</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>tau</VAR>, gsl_vector * <VAR>v</VAR>)</I>
<DD><A NAME="IDX1207"></A>
This function applies the matrix Q encoded in the decomposition
(<VAR>QR</VAR>,<VAR>tau</VAR>) to the vector <VAR>v</VAR>, storing the result Q
v in <VAR>v</VAR>.  The matrix multiplication is carried out directly using
the encoding of the Householder vectors without needing to form the full
matrix Q.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_Rsolve</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1208"></A>
This function solves the triangular system R x = b for
<VAR>x</VAR>. It may be useful if the product b' = Q^T b has already
been computed using <CODE>gsl_linalg_QR_QTvec</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_Rsvx</B> <I>(const gsl_matrix * <VAR>QR</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1209"></A>
This function solves the triangular system R x = b for <VAR>x</VAR>
in-place. On input <VAR>x</VAR> should contain the right-hand side b
and is replaced by the solution on output. This function may be useful if
the product b' = Q^T b has already been computed using
<CODE>gsl_linalg_QR_QTvec</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_unpack</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>tau</VAR>, gsl_matrix * <VAR>Q</VAR>, gsl_matrix * <VAR>R</VAR>)</I>
<DD><A NAME="IDX1210"></A>
This function unpacks the encoded QR decomposition
(<VAR>QR</VAR>,<VAR>tau</VAR>) into the matrices <VAR>Q</VAR> and <VAR>R</VAR>, where
<VAR>Q</VAR> is M-by-M and <VAR>R</VAR> is M-by-N. 
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_QRsolve</B> <I>(gsl_matrix * <VAR>Q</VAR>, gsl_matrix * <VAR>R</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1211"></A>
This function solves the system R x = Q^T b for <VAR>x</VAR>. It can
be used when the QR decomposition of a matrix is available in
unpacked form as (<VAR>Q</VAR>, <VAR>R</VAR>).
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QR_update</B> <I>(gsl_matrix * <VAR>Q</VAR>, gsl_matrix * <VAR>R</VAR>, gsl_vector * <VAR>w</VAR>, const gsl_vector * <VAR>v</VAR>)</I>
<DD><A NAME="IDX1212"></A>
This function performs a rank-1 update w v^T of the QR
decomposition (<VAR>Q</VAR>, <VAR>R</VAR>). The update is given by Q'R' = Q
R + w v^T where the output matrices Q' and R' are also
orthogonal and right triangular. Note that <VAR>w</VAR> is destroyed by the
update.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_R_solve</B> <I>(const gsl_matrix * <VAR>R</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1213"></A>
This function solves the triangular system R x = b for the
N-by-N matrix <VAR>R</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_R_svx</B> <I>(const gsl_matrix * <VAR>R</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1214"></A>
This function solves the triangular system R x = b in-place. On
input <VAR>x</VAR> should contain the right-hand side b, which is
replaced by the solution on output.
</DL>

</P>


<H2><A NAME="SEC222" HREF="gsl-ref_toc.html#TOC222">QR Decomposition with Column Pivoting</A></H2>
<P>
<A NAME="IDX1215"></A>

</P>
<P>
The QR decomposition can be extended to the rank deficient case
by introducing a column permutation P,

</P>

<PRE class="example">
A P = Q R
</PRE>

<P>
The first r columns of this Q form an orthonormal basis
for the range of A for a matrix with column rank r.  This
decomposition can also be used to convert the linear system A x =
b into the triangular system R y = Q^T b, x = P y, which can be
solved by back-substitution and permutation.  We denote the QR
decomposition with column pivoting by QRP^T since A = Q R
P^T.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QRPT_decomp</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_vector * <VAR>tau</VAR>, gsl_permutation * <VAR>p</VAR>, int *<VAR>signum</VAR>, gsl_vector * <VAR>norm</VAR>)</I>
<DD><A NAME="IDX1216"></A>
This function factorizes the M-by-N matrix <VAR>A</VAR> into
the QRP^T decomposition A = Q R P^T.  On output the
diagonal and upper triangular part of the input matrix contain the
matrix R. The permutation matrix P is stored in the
permutation <VAR>p</VAR>.  The sign of the permutation is given by
<VAR>signum</VAR>. It has the value (-1)^n, where n is the
number of interchanges in the permutation. The vector <VAR>tau</VAR> and the
columns of the lower triangular part of the matrix <VAR>A</VAR> contain the
Householder coefficients and vectors which encode the orthogonal matrix
<VAR>Q</VAR>.  The vector <VAR>tau</VAR> must be of length k=\min(M,N). The
matrix Q is related to these components by, Q = Q_k ... Q_2
Q_1 where Q_i = I - \tau_i v_i v_i^T and v_i is the
Householder vector v_i =
(0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme
as used by LAPACK.  The vector <VAR>norm</VAR> is workspace of length
<VAR>N</VAR> used for column pivoting.

</P>
<P>
The algorithm used to perform the decomposition is Householder QR with
column pivoting (Golub &#38; Van Loan, <CITE>Matrix Computations</CITE>, Algorithm
5.4.1).
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QRPT_decomp2</B> <I>(const gsl_matrix * <VAR>A</VAR>, gsl_matrix * <VAR>q</VAR>, gsl_matrix * <VAR>r</VAR>, gsl_vector * <VAR>tau</VAR>, gsl_permutation * <VAR>p</VAR>, int *<VAR>signum</VAR>, gsl_vector * <VAR>norm</VAR>)</I>
<DD><A NAME="IDX1217"></A>
This function factorizes the matrix <VAR>A</VAR> into the decomposition
A = Q R P^T without modifying <VAR>A</VAR> itself and storing the
output in the separate matrices <VAR>q</VAR> and <VAR>r</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QRPT_solve</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>tau</VAR>, const gsl_permutation * <VAR>p</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1218"></A>
This function solves the system A x = b using the QRP^T
decomposition of A into (<VAR>QR</VAR>, <VAR>tau</VAR>, <VAR>p</VAR>) given by
<CODE>gsl_linalg_QRPT_decomp</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QRPT_svx</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_vector * <VAR>tau</VAR>, const gsl_permutation * <VAR>p</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1219"></A>
This function solves the system A x = b in-place using the
QRP^T decomposition of A into
(<VAR>QR</VAR>,<VAR>tau</VAR>,<VAR>p</VAR>). On input <VAR>x</VAR> should contain the
right-hand side b, which is replaced by the solution on output.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QRPT_QRsolve</B> <I>(const gsl_matrix * <VAR>Q</VAR>, const gsl_matrix * <VAR>R</VAR>, const gsl_permutation * <VAR>p</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1220"></A>
This function solves the system R P^T x = Q^T b for <VAR>x</VAR>. It can
be used when the QR decomposition of a matrix is available in
unpacked form as (<VAR>Q</VAR>, <VAR>R</VAR>).
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QRPT_update</B> <I>(gsl_matrix * <VAR>Q</VAR>, gsl_matrix * <VAR>R</VAR>, const gsl_permutation * <VAR>p</VAR>, gsl_vector * <VAR>u</VAR>, const gsl_vector * <VAR>v</VAR>)</I>
<DD><A NAME="IDX1221"></A>
This function performs a rank-1 update w v^T of the QRP^T
decomposition (<VAR>Q</VAR>, <VAR>R</VAR>, <VAR>p</VAR>). The update is given by
Q'R' = Q R + w v^T where the output matrices Q' and
R' are also orthogonal and right triangular. Note that <VAR>w</VAR> is
destroyed by the update. The permutation <VAR>p</VAR> is not changed.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QRPT_Rsolve</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_permutation * <VAR>p</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1222"></A>
This function solves the triangular system R P^T x = b for the
N-by-N matrix R contained in <VAR>QR</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_QRPT_Rsvx</B> <I>(const gsl_matrix * <VAR>QR</VAR>, const gsl_permutation * <VAR>p</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1223"></A>
This function solves the triangular system R P^T x = b in-place
for the N-by-N matrix R contained in <VAR>QR</VAR>. On
input <VAR>x</VAR> should contain the right-hand side b, which is
replaced by the solution on output.
</DL>

</P>


<H2><A NAME="SEC223" HREF="gsl-ref_toc.html#TOC223">Singular Value Decomposition</A></H2>
<P>
<A NAME="IDX1224"></A>
<A NAME="IDX1225"></A>

</P>
<P>
A general rectangular M-by-N matrix A has a
singular value decomposition (SVD) into the product of an
M-by-N orthogonal matrix U, an N-by-N
diagonal matrix of singular values S and the transpose of an
N-by-N orthogonal square matrix V,

</P>

<PRE class="example">
A = U S V^T
</PRE>

<P>
The singular values
\sigma_i = S_{ii} are all non-negative and are
generally chosen to form a non-increasing sequence 
\sigma_1 &#62;= \sigma_2 &#62;= ... &#62;= \sigma_N &#62;= 0.

</P>
<P>
The singular value decomposition of a matrix has many practical uses.
The condition number of the matrix is given by the ratio of the largest
singular value to the smallest singular value. The presence of a zero
singular value indicates that the matrix is singular. The number of
non-zero singular values indicates the rank of the matrix.  In practice
singular value decomposition of a rank-deficient matrix will not produce
exact zeroes for singular values, due to finite numerical
precision. Small singular values should be edited by choosing a suitable
tolerance.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_SV_decomp</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_matrix * <VAR>V</VAR>, gsl_vector * <VAR>S</VAR>, gsl_vector * <VAR>work</VAR>)</I>
<DD><A NAME="IDX1226"></A>
This function factorizes the M-by-N matrix <VAR>A</VAR> into
the singular value decomposition A = U S V^T. On output the
matrix <VAR>A</VAR> is replaced by U. The diagonal elements of the
singular value matrix S are stored in the vector <VAR>S</VAR>. The
singular values are non-negative and form a non-increasing sequence from
S_1 to S_N. The matrix <VAR>V</VAR> contains the elements of
V in untransposed form. To form the product U S V^T it is
necessary to take the transpose of <VAR>V</VAR>.  A workspace of length
<VAR>N</VAR> is required in <VAR>work</VAR>.

</P>
<P>
This routine uses the Golub-Reinsch SVD algorithm.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_SV_decomp_mod</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_matrix * <VAR>X</VAR>, gsl_matrix * <VAR>V</VAR>, gsl_vector * <VAR>S</VAR>, gsl_vector * <VAR>work</VAR>)</I>
<DD><A NAME="IDX1227"></A>
This function computes the SVD using the modified Golub-Reinsch
algorithm, which is faster for 
M&#62;&#62;N.  It requires the vector
<VAR>work</VAR> and the N-by-N matrix <VAR>X</VAR> as additional
working space.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_SV_decomp_jacobi</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_matrix * <VAR>V</VAR>, gsl_vector * <VAR>S</VAR>)</I>
<DD><A NAME="IDX1228"></A>
This function computes the SVD using one-sided Jacobi orthogonalization
(see references for details).  The Jacobi method can compute singular
values to higher relative accuracy than Golub-Reinsch algorithms.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_SV_solve</B> <I>(gsl_matrix * <VAR>U</VAR>, gsl_matrix * <VAR>V</VAR>, gsl_vector * <VAR>S</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1229"></A>
This function solves the system A x = b using the singular value
decomposition (<VAR>U</VAR>, <VAR>S</VAR>, <VAR>V</VAR>) of A given by
<CODE>gsl_linalg_SV_decomp</CODE>.

</P>
<P>
Only non-zero singular values are used in computing the solution. The
parts of the solution corresponding to singular values of zero are
ignored.  Other singular values can be edited out by setting them to
zero before calling this function. 

</P>
<P>
In the over-determined case where <VAR>A</VAR> has more rows than columns the
system is solved in the least squares sense, returning the solution
<VAR>x</VAR> which minimizes ||A x - b||_2.
</DL>

</P>


<H2><A NAME="SEC224" HREF="gsl-ref_toc.html#TOC224">Cholesky Decomposition</A></H2>
<P>
<A NAME="IDX1230"></A>
<A NAME="IDX1231"></A>
<A NAME="IDX1232"></A>

</P>
<P>
A symmetric, positive definite square matrix A has a Cholesky
decomposition into a product of a lower triangular matrix L and
its transpose L^T,

</P>

<PRE class="example">
A = L L^T
</PRE>

<P>
This is sometimes referred to as taking the square-root of a matrix. The
Cholesky decomposition can only be carried out when all the eigenvalues
of the matrix are positive.  This decomposition can be used to convert
the linear system A x = b into a pair of triangular systems
(L y = b, L^T x = y), which can be solved by forward and
back-substitution.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_cholesky_decomp</B> <I>(gsl_matrix * <VAR>A</VAR>)</I>
<DD><A NAME="IDX1233"></A>
This function factorizes the positive-definite square matrix <VAR>A</VAR>
into the Cholesky decomposition A = L L^T. On output the diagonal
and lower triangular part of the input matrix <VAR>A</VAR> contain the matrix
L. The upper triangular part of the input matrix contains
L^T, the diagonal terms being identical for both L and
L^T.  If the matrix is not positive-definite then the
decomposition will fail, returning the error code <CODE>GSL_EDOM</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_cholesky_solve</B> <I>(const gsl_matrix * <VAR>cholesky</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1234"></A>
This function solves the system A x = b using the Cholesky
decomposition of A into the matrix <VAR>cholesky</VAR> given by
<CODE>gsl_linalg_cholesky_decomp</CODE>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_cholesky_svx</B> <I>(const gsl_matrix * <VAR>cholesky</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1235"></A>
This function solves the system A x = b in-place using the
Cholesky decomposition of A into the matrix <VAR>cholesky</VAR> given
by <CODE>gsl_linalg_cholesky_decomp</CODE>. On input <VAR>x</VAR> should contain
the right-hand side b, which is replaced by the solution on
output.
</DL>

</P>


<H2><A NAME="SEC225" HREF="gsl-ref_toc.html#TOC225">Tridiagonal Decomposition of Real Symmetric Matrices</A></H2>
<P>
<A NAME="IDX1236"></A>

</P>
<P>
A symmetric matrix A can be factorized by similarity
transformations into the form,

</P>

<PRE class="example">
A = Q T Q^T
</PRE>

<P>
where Q is an orthogonal matrix and T is a symmetric
tridiagonal matrix.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_symmtd_decomp</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_vector * <VAR>tau</VAR>)</I>
<DD><A NAME="IDX1237"></A>
This function factorizes the symmetric square matrix <VAR>A</VAR> into the
symmetric tridiagonal decomposition Q T Q^T.  On output the
diagonal and subdiagonal part of the input matrix <VAR>A</VAR> contain the
tridiagonal matrix T.  The remaining lower triangular part of the
input matrix contains the Householder vectors which, together with the
Householder coefficients <VAR>tau</VAR>, encode the orthogonal matrix
Q. This storage scheme is the same as used by LAPACK.  The
upper triangular part of <VAR>A</VAR> is not referenced.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_symmtd_unpack</B> <I>(const gsl_matrix * <VAR>A</VAR>, const gsl_vector * <VAR>tau</VAR>, gsl_matrix * <VAR>Q</VAR>, gsl_vector * <VAR>diag</VAR>, gsl_vector * <VAR>subdiag</VAR>)</I>
<DD><A NAME="IDX1238"></A>
This function unpacks the encoded symmetric tridiagonal decomposition
(<VAR>A</VAR>, <VAR>tau</VAR>) obtained from <CODE>gsl_linalg_symmtd_decomp</CODE> into
the orthogonal matrix <VAR>Q</VAR>, the vector of diagonal elements <VAR>diag</VAR>
and the vector of subdiagonal elements <VAR>subdiag</VAR>.  
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_symmtd_unpack_T</B> <I>(const gsl_matrix * <VAR>A</VAR>, gsl_vector * <VAR>diag</VAR>, gsl_vector * <VAR>subdiag</VAR>)</I>
<DD><A NAME="IDX1239"></A>
This function unpacks the diagonal and subdiagonal of the encoded
symmetric tridiagonal decomposition (<VAR>A</VAR>, <VAR>tau</VAR>) obtained from
<CODE>gsl_linalg_symmtd_decomp</CODE> into the vectors <VAR>diag</VAR> and <VAR>subdiag</VAR>.
</DL>

</P>


<H2><A NAME="SEC226" HREF="gsl-ref_toc.html#TOC226">Tridiagonal Decomposition of Hermitian Matrices</A></H2>
<P>
<A NAME="IDX1240"></A>

</P>
<P>
A hermitian matrix A can be factorized by similarity
transformations into the form,

</P>

<PRE class="example">
A = U T U^T
</PRE>

<P>
where U is an unitary matrix and T is a real symmetric
tridiagonal matrix.

</P>

<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_hermtd_decomp</B> <I>(gsl_matrix_complex * <VAR>A</VAR>, gsl_vector_complex * <VAR>tau</VAR>)</I>
<DD><A NAME="IDX1241"></A>
This function factorizes the hermitian matrix <VAR>A</VAR> into the symmetric
tridiagonal decomposition U T U^T.  On output the real parts of
the diagonal and subdiagonal part of the input matrix <VAR>A</VAR> contain
the tridiagonal matrix T.  The remaining lower triangular part of
the input matrix contains the Householder vectors which, together with
the Householder coefficients <VAR>tau</VAR>, encode the orthogonal matrix
Q. This storage scheme is the same as used by LAPACK.  The
upper triangular part of <VAR>A</VAR> and imaginary parts of the diagonal are
not referenced.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_hermtd_unpack</B> <I>(const gsl_matrix_complex * <VAR>A</VAR>, const gsl_vector_complex * <VAR>tau</VAR>, gsl_matrix_complex * <VAR>Q</VAR>, gsl_vector * <VAR>diag</VAR>, gsl_vector * <VAR>subdiag</VAR>)</I>
<DD><A NAME="IDX1242"></A>
This function unpacks the encoded tridiagonal decomposition (<VAR>A</VAR>,
<VAR>tau</VAR>) obtained from <CODE>gsl_linalg_hermtd_decomp</CODE> into the
unitary matrix <VAR>U</VAR>, the real vector of diagonal elements <VAR>diag</VAR> and
the real vector of subdiagonal elements <VAR>subdiag</VAR>. 
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_hermtd_unpack_T</B> <I>(const gsl_matrix_complex * <VAR>A</VAR>, gsl_vector * <VAR>diag</VAR>, gsl_vector * <VAR>subdiag</VAR>)</I>
<DD><A NAME="IDX1243"></A>
This function unpacks the diagonal and subdiagonal of the encoded
tridiagonal decomposition (<VAR>A</VAR>, <VAR>tau</VAR>) obtained from
<CODE>gsl_linalg_hermtd_decomp</CODE> into the real vectors <VAR>diag</VAR> and
<VAR>subdiag</VAR>.
</DL>

</P>


<H2><A NAME="SEC227" HREF="gsl-ref_toc.html#TOC227">Bidiagonalization</A></H2>
<P>
<A NAME="IDX1244"></A>

</P>
<P>
A general matrix A can be factorized by similarity
transformations into the form,

</P>

<PRE class="example">
A = U B V^T
</PRE>

<P>
where U and V are orthogonal matrices and B is a
N-by-N bidiagonal matrix with non-zero entries only on the
diagonal and superdiagonal.  The size of <VAR>U</VAR> is M-by-N
and the size of <VAR>V</VAR> is N-by-N.

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_bidiag_decomp</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_vector * <VAR>tau_U</VAR>, gsl_vector * <VAR>tau_V</VAR>)</I>
<DD><A NAME="IDX1245"></A>
This function factorizes the M-by-N matrix <VAR>A</VAR> into
bidiagonal form U B V^T.  The diagonal and superdiagonal of the
matrix B are stored in the diagonal and superdiagonal of <VAR>A</VAR>.
The orthogonal matrices U and <VAR>V</VAR> are stored as compressed
Householder vectors in the remaining elements of <VAR>A</VAR>.  The
Householder coefficients are stored in the vectors <VAR>tau_U</VAR> and
<VAR>tau_V</VAR>.  The length of <VAR>tau_U</VAR> must equal the number of
elements in the diagonal of <VAR>A</VAR> and the length of <VAR>tau_V</VAR> should
be one element shorter.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_bidiag_unpack</B> <I>(const gsl_matrix * <VAR>A</VAR>, const gsl_vector * <VAR>tau_U</VAR>, gsl_matrix * <VAR>U</VAR>, const gsl_vector * <VAR>tau_V</VAR>, gsl_matrix * <VAR>V</VAR>, gsl_vector * <VAR>diag</VAR>, gsl_vector * <VAR>superdiag</VAR>)</I>
<DD><A NAME="IDX1246"></A>
This function unpacks the bidiagonal decomposition of <VAR>A</VAR> given by
<CODE>gsl_linalg_bidiag_decomp</CODE>, (<VAR>A</VAR>, <VAR>tau_U</VAR>, <VAR>tau_V</VAR>)
into the separate orthogonal matrices <VAR>U</VAR>, <VAR>V</VAR> and the diagonal
vector <VAR>diag</VAR> and superdiagonal <VAR>superdiag</VAR>.  Note that <VAR>U</VAR>
is stored as a compact M-by-N orthogonal matrix satisfying
U^T U = I for efficiency.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_bidiag_unpack2</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_vector * <VAR>tau_U</VAR>, gsl_vector * <VAR>tau_V</VAR>, gsl_matrix * <VAR>V</VAR>)</I>
<DD><A NAME="IDX1247"></A>
This function unpacks the bidiagonal decomposition of <VAR>A</VAR> given by
<CODE>gsl_linalg_bidiag_decomp</CODE>, (<VAR>A</VAR>, <VAR>tau_U</VAR>, <VAR>tau_V</VAR>)
into the separate orthogonal matrices <VAR>U</VAR>, <VAR>V</VAR> and the diagonal
vector <VAR>diag</VAR> and superdiagonal <VAR>superdiag</VAR>.  The matrix <VAR>U</VAR>
is stored in-place in <VAR>A</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_bidiag_unpack_B</B> <I>(const gsl_matrix * <VAR>A</VAR>, gsl_vector * <VAR>diag</VAR>, gsl_vector * <VAR>superdiag</VAR>)</I>
<DD><A NAME="IDX1248"></A>
This function unpacks the diagonal and superdiagonal of the bidiagonal
decomposition of <VAR>A</VAR> given by <CODE>gsl_linalg_bidiag_decomp</CODE>, into
the diagonal vector <VAR>diag</VAR> and superdiagonal vector <VAR>superdiag</VAR>.
</DL>

</P>


<H2><A NAME="SEC228" HREF="gsl-ref_toc.html#TOC228">Householder Transformations</A></H2>
<P>
<A NAME="IDX1249"></A>
<A NAME="IDX1250"></A>
<A NAME="IDX1251"></A>

</P>
<P>
A Householder transformation is a rank-1 modification of the identity
matrix which can be used to zero out selected elements of a vector.  A
Householder matrix P takes the form,

</P>

<PRE class="example">
P = I - \tau v v^T
</PRE>

<P>
where v is a vector (called the <I>Householder vector</I>) and
\tau = 2/(v^T v).  The functions described in this section use the
rank-1 structure of the Householder matrix to create and apply
Householder transformations efficiently.

</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_linalg_householder_transform</B> <I>(gsl_vector * <VAR>v</VAR>)</I>
<DD><A NAME="IDX1252"></A>
This function prepares a Householder transformation P = I - \tau v
v^T which can be used to zero all the elements of the input vector except
the first.  On output the transformation is stored in the vector <VAR>v</VAR>
and the scalar \tau is returned.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_householder_hm</B> <I>(double tau, const gsl_vector * v, gsl_matrix * A)</I>
<DD><A NAME="IDX1253"></A>
This function applies the Householder matrix P defined by the
scalar <VAR>tau</VAR> and the vector <VAR>v</VAR> to the left-hand side of the
matrix <VAR>A</VAR>. On output the result P A is stored in <VAR>A</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_householder_mh</B> <I>(double tau, const gsl_vector * v, gsl_matrix * A)</I>
<DD><A NAME="IDX1254"></A>
This function applies the Householder matrix P defined by the
scalar <VAR>tau</VAR> and the vector <VAR>v</VAR> to the right-hand side of the
matrix <VAR>A</VAR>. On output the result A P is stored in <VAR>A</VAR>.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_householder_hv</B> <I>(double tau, const gsl_vector * v, gsl_vector * w)</I>
<DD><A NAME="IDX1255"></A>
This function applies the Householder transformation P defined by
the scalar <VAR>tau</VAR> and the vector <VAR>v</VAR> to the vector <VAR>w</VAR>.  On
output the result P w is stored in <VAR>w</VAR>.
</DL>

</P>



<H2><A NAME="SEC229" HREF="gsl-ref_toc.html#TOC229">Householder solver for linear systems</A></H2>
<P>
<A NAME="IDX1256"></A>
<A NAME="IDX1257"></A>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_HH_solve</B> <I>(gsl_matrix * <VAR>A</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1258"></A>
This function solves the system A x = b directly using
Householder transformations. On output the solution is stored in <VAR>x</VAR>
and <VAR>b</VAR> is not modified. The matrix <VAR>A</VAR> is destroyed by the
Householder transformations.
</DL>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_HH_svx</B> <I>(gsl_matrix * <VAR>A</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1259"></A>
This function solves the system A x = b in-place using
Householder transformations.  On input <VAR>x</VAR> should contain the
right-hand side b, which is replaced by the solution on output.  The
matrix <VAR>A</VAR> is destroyed by the Householder transformations.
</DL>

</P>


<H2><A NAME="SEC230" HREF="gsl-ref_toc.html#TOC230">Tridiagonal Systems</A></H2>
<P>
<A NAME="IDX1260"></A>

</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_solve_tridiag</B> <I>(const gsl_vector * <VAR>diag</VAR>, const gsl_vector * <VAR>e</VAR>, const gsl_vector * <VAR>f</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1261"></A>
This function solves the general N-by-N system A x =
b where <VAR>A</VAR> is tridiagonal (
N &#62;= 2). The super-diagonal and
sub-diagonal vectors <VAR>e</VAR> and <VAR>f</VAR> must be one element shorter
than the diagonal vector <VAR>diag</VAR>.  The form of <VAR>A</VAR> for the 4-by-4
case is shown below,

</P>

<PRE class="example">
A = ( d_0 e_0  0   0  )
    ( f_0 d_1 e_1  0  )
    (  0  f_1 d_2 e_2 )
    (  0   0  f_2 d_3 )
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_solve_symm_tridiag</B> <I>(const gsl_vector * <VAR>diag</VAR>, const gsl_vector * <VAR>e</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1262"></A>
This function solves the general N-by-N system A x =
b where <VAR>A</VAR> is symmetric tridiagonal (
N &#62;= 2).  The off-diagonal vector
<VAR>e</VAR> must be one element shorter than the diagonal vector <VAR>diag</VAR>.
The form of <VAR>A</VAR> for the 4-by-4 case is shown below,

</P>

<PRE class="example">
A = ( d_0 e_0  0   0  )
    ( e_0 d_1 e_1  0  )
    (  0  e_1 d_2 e_2 )
    (  0   0  e_2 d_3 )
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_solve_cyc_tridiag</B> <I>(const gsl_vector * <VAR>diag</VAR>, const gsl_vector * <VAR>e</VAR>, const gsl_vector * <VAR>f</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1263"></A>
This function solves the general N-by-N system A x =
b where <VAR>A</VAR> is cyclic tridiagonal (
N &#62;= 3).  The cyclic super-diagonal and
sub-diagonal vectors <VAR>e</VAR> and <VAR>f</VAR> must have the same number of
elements as the diagonal vector <VAR>diag</VAR>.  The form of <VAR>A</VAR> for the
4-by-4 case is shown below,

</P>

<PRE class="example">
A = ( d_0 e_0  0  f_3 )
    ( f_0 d_1 e_1  0  )
    (  0  f_1 d_2 e_2 )
    ( e_3  0  f_2 d_3 )
</PRE>

</DL>

<P>
<DL>
<DT><U>Function:</U> int <B>gsl_linalg_solve_symm_cyc_tridiag</B> <I>(const gsl_vector * <VAR>diag</VAR>, const gsl_vector * <VAR>e</VAR>, const gsl_vector * <VAR>b</VAR>, gsl_vector * <VAR>x</VAR>)</I>
<DD><A NAME="IDX1264"></A>
This function solves the general N-by-N system A x =
b where <VAR>A</VAR> is symmetric cyclic tridiagonal (
N &#62;= 3).  The cyclic
off-diagonal vector <VAR>e</VAR> must have the same number of elements as the
diagonal vector <VAR>diag</VAR>.  The form of <VAR>A</VAR> for the 4-by-4 case is
shown below,

</P>

<PRE class="example">
A = ( d_0 e_0  0  e_3 )
    ( e_0 d_1 e_1  0  )
    (  0  e_1 d_2 e_2 )
    ( e_3  0  e_2 d_3 )
</PRE>

</DL>



<H2><A NAME="SEC231" HREF="gsl-ref_toc.html#TOC231">Examples</A></H2>

<P>
The following program solves the linear system A x = b. The
system to be solved is,

</P>

<PRE class="example">
[ 0.18 0.60 0.57 0.96 ] [x0]   [1.0]
[ 0.41 0.24 0.99 0.58 ] [x1] = [2.0]
[ 0.14 0.30 0.97 0.66 ] [x2]   [3.0]
[ 0.51 0.13 0.19 0.85 ] [x3]   [4.0]
</PRE>

<P>
and the solution is found using LU decomposition of the matrix A.

</P>

<PRE class="example">
#include &#60;stdio.h&#62;
#include &#60;gsl/gsl_linalg.h&#62;

int
main (void)
{
  double a_data[] = { 0.18, 0.60, 0.57, 0.96,
                      0.41, 0.24, 0.99, 0.58,
                      0.14, 0.30, 0.97, 0.66,
                      0.51, 0.13, 0.19, 0.85 };

  double b_data[] = { 1.0, 2.0, 3.0, 4.0 };

  gsl_matrix_view m 
    = gsl_matrix_view_array (a_data, 4, 4);

  gsl_vector_view b
    = gsl_vector_view_array (b_data, 4);

  gsl_vector *x = gsl_vector_alloc (4);
  
  int s;

  gsl_permutation * p = gsl_permutation_alloc (4);

  gsl_linalg_LU_decomp (&#38;m.matrix, p, &#38;s);

  gsl_linalg_LU_solve (&#38;m.matrix, p, &#38;b.vector, x);

  printf ("x = \n");
  gsl_vector_fprintf (stdout, x, "%g");

  gsl_permutation_free (p);
  return 0;
}
</PRE>

<P>
Here is the output from the program,

</P>

<PRE class="example">
x = -4.05205
-12.6056
1.66091
8.69377
</PRE>

<P>
This can be verified by multiplying the solution x by the
original matrix A using GNU OCTAVE,

<PRE class="example">
octave&#62; A = [ 0.18, 0.60, 0.57, 0.96;
              0.41, 0.24, 0.99, 0.58; 
              0.14, 0.30, 0.97, 0.66; 
              0.51, 0.13, 0.19, 0.85 ];

octave&#62; x = [ -4.05205; -12.6056; 1.66091; 8.69377];

octave&#62; A * x
ans =

  1.0000
  2.0000
  3.0000
  4.0000
</PRE>

<P>
This reproduces the original right-hand side vector, b, in
accordance with the equation A x = b.

</P>


<H2><A NAME="SEC232" HREF="gsl-ref_toc.html#TOC232">References and Further Reading</A></H2>

<P>
Further information on the algorithms described in this section can be
found in the following book,

</P>

<UL class="itemize">
<LI>

G. H. Golub, C. F. Van Loan, <CITE>Matrix Computations</CITE> (3rd Ed, 1996),
Johns Hopkins University Press, ISBN 0-8018-5414-8.
</UL>

<P>
The LAPACK library is described in the following manual,

</P>

<UL class="itemize">
<LI>

<CITE>LAPACK Users' Guide</CITE> (Third Edition, 1999), Published by SIAM,
ISBN 0-89871-447-8.

<A HREF="http://www.netlib.org/lapack">http://www.netlib.org/lapack</A> 
</UL>

<P>
The LAPACK source code can be found at the website above, along
with an online copy of the users guide.

</P>
<P>
The Modified Golub-Reinsch algorithm is described in the following paper,

</P>

<UL class="itemize">
<LI>

T.F. Chan, "An Improved Algorithm for Computing the Singular Value
Decomposition", <CITE>ACM Transactions on Mathematical Software</CITE>, 8
(1982), pp 72--83.
</UL>

<P>
The Jacobi algorithm for singular value decomposition is described in
the following papers,

</P>

<UL class="itemize">
<LI>

J.C.Nash, "A one-sided transformation method for the singular value
decomposition and algebraic eigenproblem", <CITE>Computer Journal</CITE>,
Volume 18, Number 1 (1973), p 74--76

<LI>

James Demmel, Kresimir Veselic, "Jacobi's Method is more accurate than
QR", <CITE>Lapack Working Note 15</CITE> (LAWN-15), October 1989. Available
from netlib, <A HREF="http://www.netlib.org/lapack/">http://www.netlib.org/lapack/</A> in the <CODE>lawns</CODE> or
<CODE>lawnspdf</CODE> directories.
</UL>

<P><HR><P>
<p>Go to the <A HREF="gsl-ref_1.html">first</A>, <A HREF="gsl-ref_12.html">previous</A>, <A HREF="gsl-ref_14.html">next</A>, <A HREF="gsl-ref_50.html">last</A> section, <A HREF="gsl-ref_toc.html">table of contents</A>.
</BODY>
</HTML>