1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
|
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.54+ (gsl)
from ../gsl-ref.texi -->
<TITLE>GNU Scientific Library -- Reference Manual - Histograms</TITLE>
<!-- <LINK rel="stylesheet" title="Default Style Sheet" href="/css/texinfo.css" type="text/css"> -->
<link href="gsl-ref_22.html" rel=Next>
<link href="gsl-ref_20.html" rel=Previous>
<link href="gsl-ref_toc.html" rel=ToC>
</HEAD>
<BODY>
<p>Go to the <A HREF="gsl-ref_1.html">first</A>, <A HREF="gsl-ref_20.html">previous</A>, <A HREF="gsl-ref_22.html">next</A>, <A HREF="gsl-ref_50.html">last</A> section, <A HREF="gsl-ref_toc.html">table of contents</A>.
<P><HR><P>
<H1><A NAME="SEC338" HREF="gsl-ref_toc.html#TOC338">Histograms</A></H1>
<P>
<A NAME="IDX1722"></A>
<A NAME="IDX1723"></A>
This chapter describes functions for creating histograms. Histograms
provide a convenient way of summarizing the distribution of a set of
data. A histogram consists of a set of <I>bins</I> which count the number
of events falling into a given range of a continuous variable x.
In GSL the bins of a histogram contain floating-point numbers, so they
can be used to record both integer and non-integer distributions. The
bins can use arbitrary sets of ranges (uniformly spaced bins are the
default). Both one and two-dimensional histograms are supported.
</P>
<P>
Once a histogram has been created it can also be converted into a
probability distribution function. The library provides efficient
routines for selecting random samples from probability distributions.
This can be useful for generating simulations based on real data.
</P>
<P>
The functions are declared in the header files <TT>'gsl_histogram.h'</TT>
and <TT>'gsl_histogram2d.h'</TT>.
</P>
<H2><A NAME="SEC339" HREF="gsl-ref_toc.html#TOC339">The histogram struct</A></H2>
<P>
A histogram is defined by the following struct,
</P>
<P>
<DL>
<DT><U>Data Type:</U> <B>gsl_histogram</B>
<DD><A NAME="IDX1724"></A>
<DL COMPACT>
<DT><CODE>size_t n</CODE>
<DD>
This is the number of histogram bins
<DT><CODE>double * range</CODE>
<DD>
The ranges of the bins are stored in an array of <VAR>n+1</VAR> elements
pointed to by <VAR>range</VAR>.
<DT><CODE>double * bin</CODE>
<DD>
The counts for each bin are stored in an array of <VAR>n</VAR> elements
pointed to by <VAR>bin</VAR>. The bins are floating-point numbers, so you can
increment them by non-integer values if necessary.
</DL>
</DL>
<P>
The range for <VAR>bin</VAR>[i] is given by <VAR>range</VAR>[i] to
<VAR>range</VAR>[i+1]. For n bins there are n+1 entries in the
array <VAR>range</VAR>. Each bin is inclusive at the lower end and exclusive
at the upper end. Mathematically this means that the bins are defined by
the following inequality,
</P>
<PRE class="display">
bin[i] corresponds to range[i] <= x < range[i+1]
</PRE>
<P>
Here is a diagram of the correspondence between ranges and bins on the
number-line for x,
</P>
<PRE class="smallexample">
[ bin[0] )[ bin[1] )[ bin[2] )[ bin[3] )[ bin[5] )
---|---------|---------|---------|---------|---------|--- x
r[0] r[1] r[2] r[3] r[4] r[5]
</PRE>
<P>
In this picture the values of the <VAR>range</VAR> array are denoted by
r. On the left-hand side of each bin the square bracket
"<CODE>[</CODE>" denotes an inclusive lower bound
(
r <= x), and the round parentheses "<CODE>)</CODE>" on the right-hand
side denote an exclusive upper bound (x < r). Thus any samples
which fall on the upper end of the histogram are excluded. If you want
to include this value for the last bin you will need to add an extra bin
to your histogram.
</P>
<P>
The <CODE>gsl_histogram</CODE> struct and its associated functions are defined
in the header file <TT>'gsl_histogram.h'</TT>.
</P>
<H2><A NAME="SEC340" HREF="gsl-ref_toc.html#TOC340">Histogram allocation</A></H2>
<P>
The functions for allocating memory to a histogram follow the style of
<CODE>malloc</CODE> and <CODE>free</CODE>. In addition they also perform their own
error checking. If there is insufficient memory available to allocate a
histogram then the functions call the error handler (with an error
number of <CODE>GSL_ENOMEM</CODE>) in addition to returning a null pointer.
Thus if you use the library error handler to abort your program then it
isn't necessary to check every histogram <CODE>alloc</CODE>.
</P>
<P>
<DL>
<DT><U>Function:</U> gsl_histogram * <B>gsl_histogram_alloc</B> <I>(size_t <VAR>n</VAR>)</I>
<DD><A NAME="IDX1725"></A>
This function allocates memory for a histogram with <VAR>n</VAR> bins, and
returns a pointer to a newly created <CODE>gsl_histogram</CODE> struct. If
insufficient memory is available a null pointer is returned and the
error handler is invoked with an error code of <CODE>GSL_ENOMEM</CODE>. The
bins and ranges are not initialized, and should be prepared using one of
the range-setting functions below in order to make the histogram ready
for use.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_set_ranges</B> <I>(gsl_histogram * <VAR>h</VAR>, const double <VAR>range</VAR>[], size_t <VAR>size</VAR>)</I>
<DD><A NAME="IDX1726"></A>
This function sets the ranges of the existing histogram <VAR>h</VAR> using
the array <VAR>range</VAR> of size <VAR>size</VAR>. The values of the histogram
bins are reset to zero. The <CODE>range</CODE> array should contain the
desired bin limits. The ranges can be arbitrary, subject to the
restriction that they are monotonically increasing.
</P>
<P>
The following example shows how to create a histogram with logarithmic
bins with ranges [1,10), [10,100) and [100,1000).
</P>
<PRE class="example">
gsl_histogram * h = gsl_histogram_alloc (3);
/* bin[0] covers the range 1 <= x < 10 */
/* bin[1] covers the range 10 <= x < 100 */
/* bin[2] covers the range 100 <= x < 1000 */
double range[4] = { 1.0, 10.0, 100.0, 1000.0 };
gsl_histogram_set_ranges (h, range, 4);
</PRE>
<P>
Note that the size of the <VAR>range</VAR> array should be defined to be one
element bigger than the number of bins. The additional element is
required for the upper value of the final bin.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_set_ranges_uniform</B> <I>(gsl_histogram * <VAR>h</VAR>, double <VAR>xmin</VAR>, double <VAR>xmax</VAR>)</I>
<DD><A NAME="IDX1727"></A>
This function sets the ranges of the existing histogram <VAR>h</VAR> to cover
the range <VAR>xmin</VAR> to <VAR>xmax</VAR> uniformly. The values of the
histogram bins are reset to zero. The bin ranges are shown in the table
below,
</P>
<PRE class="display">
bin[0] corresponds to xmin <= x < xmin + d
bin[1] corresponds to xmin + d <= x < xmin + 2 d
......
bin[n-1] corresponds to xmin + (n-1)d <= x < xmax
</PRE>
<P>
where d is the bin spacing, d = (xmax-xmin)/n.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_histogram_free</B> <I>(gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1728"></A>
This function frees the histogram <VAR>h</VAR> and all of the memory
associated with it.
</DL>
</P>
<H2><A NAME="SEC341" HREF="gsl-ref_toc.html#TOC341">Copying Histograms</A></H2>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_memcpy</B> <I>(gsl_histogram * <VAR>dest</VAR>, const gsl_histogram * <VAR>src</VAR>)</I>
<DD><A NAME="IDX1729"></A>
This function copies the histogram <VAR>src</VAR> into the pre-existing
histogram <VAR>dest</VAR>, making <VAR>dest</VAR> into an exact copy of <VAR>src</VAR>.
The two histograms must be of the same size.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> gsl_histogram * <B>gsl_histogram_clone</B> <I>(const gsl_histogram * <VAR>src</VAR>)</I>
<DD><A NAME="IDX1730"></A>
This function returns a pointer to a newly created histogram which is an
exact copy of the histogram <VAR>src</VAR>.
</DL>
</P>
<H2><A NAME="SEC342" HREF="gsl-ref_toc.html#TOC342">Updating and accessing histogram elements</A></H2>
<P>
There are two ways to access histogram bins, either by specifying an
x coordinate or by using the bin-index directly. The functions
for accessing the histogram through x coordinates use a binary
search to identify the bin which covers the appropriate range.
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_increment</B> <I>(gsl_histogram * <VAR>h</VAR>, double <VAR>x</VAR>)</I>
<DD><A NAME="IDX1731"></A>
This function updates the histogram <VAR>h</VAR> by adding one (1.0) to the
bin whose range contains the coordinate <VAR>x</VAR>.
</P>
<P>
If <VAR>x</VAR> lies in the valid range of the histogram then the function
returns zero to indicate success. If <VAR>x</VAR> is less than the lower
limit of the histogram then the function returns <CODE>GSL_EDOM</CODE>, and
none of bins are modified. Similarly, if the value of <VAR>x</VAR> is greater
than or equal to the upper limit of the histogram then the function
returns <CODE>GSL_EDOM</CODE>, and none of the bins are modified. The error
handler is not called, however, since it is often necessary to compute
histograms for a small range of a larger dataset, ignoring the values
outside the range of interest.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_accumulate</B> <I>(gsl_histogram * <VAR>h</VAR>, double <VAR>x</VAR>, double <VAR>weight</VAR>)</I>
<DD><A NAME="IDX1732"></A>
This function is similar to <CODE>gsl_histogram_increment</CODE> but increases
the value of the appropriate bin in the histogram <VAR>h</VAR> by the
floating-point number <VAR>weight</VAR>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram_get</B> <I>(const gsl_histogram * <VAR>h</VAR>, size_t <VAR>i</VAR>)</I>
<DD><A NAME="IDX1733"></A>
This function returns the contents of the <VAR>i</VAR>-th bin of the histogram
<VAR>h</VAR>. If <VAR>i</VAR> lies outside the valid range of indices for the
histogram then the error handler is called with an error code of
<CODE>GSL_EDOM</CODE> and the function returns 0.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_get_range</B> <I>(const gsl_histogram * <VAR>h</VAR>, size_t <VAR>i</VAR>, double * <VAR>lower</VAR>, double * <VAR>upper</VAR>)</I>
<DD><A NAME="IDX1734"></A>
This function finds the upper and lower range limits of the <VAR>i</VAR>-th
bin of the histogram <VAR>h</VAR>. If the index <VAR>i</VAR> is valid then the
corresponding range limits are stored in <VAR>lower</VAR> and <VAR>upper</VAR>.
The lower limit is inclusive (i.e. events with this coordinate are
included in the bin) and the upper limit is exclusive (i.e. events with
the coordinate of the upper limit are excluded and fall in the
neighboring higher bin, if it exists). The function returns 0 to
indicate success. If <VAR>i</VAR> lies outside the valid range of indices for
the histogram then the error handler is called and the function returns
an error code of <CODE>GSL_EDOM</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram_max</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1735"></A>
<DT><U>Function:</U> double <B>gsl_histogram_min</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1736"></A>
<DT><U>Function:</U> size_t <B>gsl_histogram_bins</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1737"></A>
These functions return the maximum upper and minimum lower range limits
and the number of bins of the histogram <VAR>h</VAR>. They provide a way of
determining these values without accessing the <CODE>gsl_histogram</CODE>
struct directly.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_histogram_reset</B> <I>(gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1738"></A>
This function resets all the bins in the histogram <VAR>h</VAR> to zero.
</DL>
</P>
<H2><A NAME="SEC343" HREF="gsl-ref_toc.html#TOC343">Searching histogram ranges</A></H2>
<P>
The following functions are used by the access and update routines to
locate the bin which corresponds to a given x coordinate.
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_find</B> <I>(const gsl_histogram * <VAR>h</VAR>, double <VAR>x</VAR>, size_t * <VAR>i</VAR>)</I>
<DD><A NAME="IDX1739"></A>
This function finds and sets the index <VAR>i</VAR> to the bin number which
covers the coordinate <VAR>x</VAR> in the histogram <VAR>h</VAR>. The bin is
located using a binary search. The search includes an optimization for
histograms with uniform range, and will return the correct bin
immediately in this case. If <VAR>x</VAR> is found in the range of the
histogram then the function sets the index <VAR>i</VAR> and returns
<CODE>GSL_SUCCESS</CODE>. If <VAR>x</VAR> lies outside the valid range of the
histogram then the function returns <CODE>GSL_EDOM</CODE> and the error
handler is invoked.
</DL>
</P>
<H2><A NAME="SEC344" HREF="gsl-ref_toc.html#TOC344">Histogram Statistics</A></H2>
<P>
<A NAME="IDX1740"></A>
<A NAME="IDX1741"></A>
<A NAME="IDX1742"></A>
<A NAME="IDX1743"></A>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram_max_val</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1744"></A>
This function returns the maximum value contained in the histogram bins.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> size_t <B>gsl_histogram_max_bin</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1745"></A>
This function returns the index of the bin containing the maximum
value. In the case where several bins contain the same maximum value the
smallest index is returned.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram_min_val</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1746"></A>
This function returns the minimum value contained in the histogram bins.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> size_t <B>gsl_histogram_min_bin</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1747"></A>
This function returns the index of the bin containing the minimum
value. In the case where several bins contain the same maximum value the
smallest index is returned.
</DL>
</P>
<P>
<A NAME="IDX1748"></A>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram_mean</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1749"></A>
This function returns the mean of the histogrammed variable, where the
histogram is regarded as a probability distribution. Negative bin values
are ignored for the purposes of this calculation. The accuracy of the
result is limited by the bin width.
</DL>
</P>
<P>
<A NAME="IDX1750"></A>
<A NAME="IDX1751"></A>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram_sigma</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1752"></A>
This function returns the standard deviation of the histogrammed
variable, where the histogram is regarded as a probability
distribution. Negative bin values are ignored for the purposes of this
calculation. The accuracy of the result is limited by the bin width.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram_sum</B> <I>(const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1753"></A>
This function returns the sum of all bin values. Negative bin values
are included in the sum.
</DL>
</P>
<H2><A NAME="SEC345" HREF="gsl-ref_toc.html#TOC345">Histogram Operations</A></H2>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_equal_bins_p</B> <I>(const gsl_histogram *<VAR>h1</VAR>, const gsl_histogram *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1754"></A>
This function returns 1 if the all of the individual bin
ranges of the two histograms are identical, and 0
otherwise.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_add</B> <I>(gsl_histogram *<VAR>h1</VAR>, const gsl_histogram *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1755"></A>
This function adds the contents of the bins in histogram <VAR>h2</VAR> to the
corresponding bins of histogram <VAR>h1</VAR>, i.e. h'_1(i) = h_1(i) +
h_2(i). The two histograms must have identical bin ranges.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_sub</B> <I>(gsl_histogram *<VAR>h1</VAR>, const gsl_histogram *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1756"></A>
This function subtracts the contents of the bins in histogram <VAR>h2</VAR>
from the corresponding bins of histogram <VAR>h1</VAR>, i.e. h'_1(i) =
h_1(i) - h_2(i). The two histograms must have identical bin ranges.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_mul</B> <I>(gsl_histogram *<VAR>h1</VAR>, const gsl_histogram *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1757"></A>
This function multiplies the contents of the bins of histogram <VAR>h1</VAR>
by the contents of the corresponding bins in histogram <VAR>h2</VAR>,
i.e. h'_1(i) = h_1(i) * h_2(i). The two histograms must have
identical bin ranges.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_div</B> <I>(gsl_histogram *<VAR>h1</VAR>, const gsl_histogram *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1758"></A>
This function divides the contents of the bins of histogram <VAR>h1</VAR> by
the contents of the corresponding bins in histogram <VAR>h2</VAR>,
i.e. h'_1(i) = h_1(i) / h_2(i). The two histograms must have
identical bin ranges.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_scale</B> <I>(gsl_histogram *<VAR>h</VAR>, double <VAR>scale</VAR>)</I>
<DD><A NAME="IDX1759"></A>
This function multiplies the contents of the bins of histogram <VAR>h</VAR>
by the constant <VAR>scale</VAR>, i.e.
h'_1(i) = h_1(i) * scale.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_shift</B> <I>(gsl_histogram *<VAR>h</VAR>, double <VAR>offset</VAR>)</I>
<DD><A NAME="IDX1760"></A>
This function shifts the contents of the bins of histogram <VAR>h</VAR> by
the constant <VAR>offset</VAR>, i.e.
h'_1(i) = h_1(i) + offset.
</DL>
</P>
<H2><A NAME="SEC346" HREF="gsl-ref_toc.html#TOC346">Reading and writing histograms</A></H2>
<P>
The library provides functions for reading and writing histograms to a file
as binary data or formatted text.
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_fwrite</B> <I>(FILE * <VAR>stream</VAR>, const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1761"></A>
This function writes the ranges and bins of the histogram <VAR>h</VAR> to the
stream <VAR>stream</VAR> in binary format. The return value is 0 for success
and <CODE>GSL_EFAILED</CODE> if there was a problem writing to the file. Since
the data is written in the native binary format it may not be portable
between different architectures.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_fread</B> <I>(FILE * <VAR>stream</VAR>, gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1762"></A>
This function reads into the histogram <VAR>h</VAR> from the open stream
<VAR>stream</VAR> in binary format. The histogram <VAR>h</VAR> must be
preallocated with the correct size since the function uses the number of
bins in <VAR>h</VAR> to determine how many bytes to read. The return value is
0 for success and <CODE>GSL_EFAILED</CODE> if there was a problem reading from
the file. The data is assumed to have been written in the native binary
format on the same architecture.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_fprintf</B> <I>(FILE * <VAR>stream</VAR>, const gsl_histogram * <VAR>h</VAR>, const char * <VAR>range_format</VAR>, const char * <VAR>bin_format</VAR>)</I>
<DD><A NAME="IDX1763"></A>
This function writes the ranges and bins of the histogram <VAR>h</VAR>
line-by-line to the stream <VAR>stream</VAR> using the format specifiers
<VAR>range_format</VAR> and <VAR>bin_format</VAR>. These should be one of the
<CODE>%g</CODE>, <CODE>%e</CODE> or <CODE>%f</CODE> formats for floating point
numbers. The function returns 0 for success and <CODE>GSL_EFAILED</CODE> if
there was a problem writing to the file. The histogram output is
formatted in three columns, and the columns are separated by spaces,
like this,
</P>
<PRE class="example">
range[0] range[1] bin[0]
range[1] range[2] bin[1]
range[2] range[3] bin[2]
....
range[n-1] range[n] bin[n-1]
</PRE>
<P>
The values of the ranges are formatted using <VAR>range_format</VAR> and the
value of the bins are formatted using <VAR>bin_format</VAR>. Each line
contains the lower and upper limit of the range of the bins and the
value of the bin itself. Since the upper limit of one bin is the lower
limit of the next there is duplication of these values between lines but
this allows the histogram to be manipulated with line-oriented tools.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_fscanf</B> <I>(FILE * <VAR>stream</VAR>, gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1764"></A>
This function reads formatted data from the stream <VAR>stream</VAR> into the
histogram <VAR>h</VAR>. The data is assumed to be in the three-column format
used by <CODE>gsl_histogram_fprintf</CODE>. The histogram <VAR>h</VAR> must be
preallocated with the correct length since the function uses the size of
<VAR>h</VAR> to determine how many numbers to read. The function returns 0
for success and <CODE>GSL_EFAILED</CODE> if there was a problem reading from
the file.
</DL>
</P>
<H2><A NAME="SEC347" HREF="gsl-ref_toc.html#TOC347">Resampling from histograms</A></H2>
<P>
<A NAME="IDX1765"></A>
<A NAME="IDX1766"></A>
<A NAME="IDX1767"></A>
</P>
<P>
A histogram made by counting events can be regarded as a measurement of
a probability distribution. Allowing for statistical error, the height
of each bin represents the probability of an event where the value of
x falls in the range of that bin. The probability distribution
function has the one-dimensional form p(x)dx where,
</P>
<PRE class="example">
p(x) = n_i/ (N w_i)
</PRE>
<P>
In this equation n_i is the number of events in the bin which
contains x, w_i is the width of the bin and N is
the total number of events. The distribution of events within each bin
is assumed to be uniform.
</P>
<H2><A NAME="SEC348" HREF="gsl-ref_toc.html#TOC348">The histogram probability distribution struct</A></H2>
<P>
<A NAME="IDX1768"></A>
<A NAME="IDX1769"></A>
<A NAME="IDX1770"></A>
<A NAME="IDX1771"></A>
The probability distribution function for a histogram consists of a set
of <I>bins</I> which measure the probability of an event falling into a
given range of a continuous variable x. A probability
distribution function is defined by the following struct, which actually
stores the cumulative probability distribution function. This is the
natural quantity for generating samples via the inverse transform
method, because there is a one-to-one mapping between the cumulative
probability distribution and the range [0,1]. It can be shown that by
taking a uniform random number in this range and finding its
corresponding coordinate in the cumulative probability distribution we
obtain samples with the desired probability distribution.
</P>
<P>
<DL>
<DT><U>Data Type:</U> <B>gsl_histogram_pdf</B>
<DD><A NAME="IDX1772"></A>
<DL COMPACT>
<DT><CODE>size_t n</CODE>
<DD>
This is the number of bins used to approximate the probability
distribution function.
<DT><CODE>double * range</CODE>
<DD>
The ranges of the bins are stored in an array of <VAR>n+1</VAR> elements
pointed to by <VAR>range</VAR>.
<DT><CODE>double * sum</CODE>
<DD>
The cumulative probability for the bins is stored in an array of
<VAR>n</VAR> elements pointed to by <VAR>sum</VAR>.
</DL>
</DL>
<P>
The following functions allow you to create a <CODE>gsl_histogram_pdf</CODE>
struct which represents this probability distribution and generate
random samples from it.
</P>
<P>
<DL>
<DT><U>Function:</U> gsl_histogram_pdf * <B>gsl_histogram_pdf_alloc</B> <I>(size_t <VAR>n</VAR>)</I>
<DD><A NAME="IDX1773"></A>
This function allocates memory for a probability distribution with
<VAR>n</VAR> bins and returns a pointer to a newly initialized
<CODE>gsl_histogram_pdf</CODE> struct. If insufficient memory is available a
null pointer is returned and the error handler is invoked with an error
code of <CODE>GSL_ENOMEM</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram_pdf_init</B> <I>(gsl_histogram_pdf * <VAR>p</VAR>, const gsl_histogram * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1774"></A>
This function initializes the probability distribution <VAR>p</VAR> with
the contents of the histogram <VAR>h</VAR>. If any of the bins of <VAR>h</VAR> are
negative then the error handler is invoked with an error code of
<CODE>GSL_EDOM</CODE> because a probability distribution cannot contain
negative values.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_histogram_pdf_free</B> <I>(gsl_histogram_pdf * <VAR>p</VAR>)</I>
<DD><A NAME="IDX1775"></A>
This function frees the probability distribution function <VAR>p</VAR> and
all of the memory associated with it.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram_pdf_sample</B> <I>(const gsl_histogram_pdf * <VAR>p</VAR>, double <VAR>r</VAR>)</I>
<DD><A NAME="IDX1776"></A>
This function uses <VAR>r</VAR>, a uniform random number between zero and
one, to compute a single random sample from the probability distribution
<VAR>p</VAR>. The algorithm used to compute the sample s is given by
the following formula,
</P>
<PRE class="example">
s = range[i] + delta * (range[i+1] - range[i])
</PRE>
<P>
where i is the index which satisfies
sum[i] <= r < sum[i+1] and
delta is
(r - sum[i])/(sum[i+1] - sum[i]).
</DL>
</P>
<H2><A NAME="SEC349" HREF="gsl-ref_toc.html#TOC349">Example programs for histograms</A></H2>
<P>
The following program shows how to make a simple histogram of a column
of numerical data supplied on <CODE>stdin</CODE>. The program takes three
arguments, specifying the upper and lower bounds of the histogram and
the number of bins. It then reads numbers from <CODE>stdin</CODE>, one line at
a time, and adds them to the histogram. When there is no more data to
read it prints out the accumulated histogram using
<CODE>gsl_histogram_fprintf</CODE>.
</P>
<PRE class="example">
#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_histogram.h>
int
main (int argc, char **argv)
{
double a, b;
size_t n;
if (argc != 4)
{
printf ("Usage: gsl-histogram xmin xmax n\n"
"Computes a histogram of the data "
"on stdin using n bins from xmin "
"to xmax\n");
exit (0);
}
a = atof (argv[1]);
b = atof (argv[2]);
n = atoi (argv[3]);
{
double x;
gsl_histogram * h = gsl_histogram_alloc (n);
gsl_histogram_set_ranges_uniform (h, a, b);
while (fscanf (stdin, "%lg", &x) == 1)
{
gsl_histogram_increment (h, x);
}
gsl_histogram_fprintf (stdout, h, "%g", "%g");
gsl_histogram_free (h);
}
exit (0);
}
</PRE>
<P>
Here is an example of the program in use. We generate 10000 random
samples from a Cauchy distribution with a width of 30 and histogram
them over the range -100 to 100, using 200 bins.
</P>
<PRE class="example">
$ gsl-randist 0 10000 cauchy 30
| gsl-histogram -100 100 200 > histogram.dat
</PRE>
<P>
A plot of the resulting histogram shows the familiar shape of the
Cauchy distribution and the fluctuations caused by the finite sample
size.
</P>
<PRE class="example">
$ awk '{print $1, $3 ; print $2, $3}' histogram.dat
| graph -T X
</PRE>
<H2><A NAME="SEC350" HREF="gsl-ref_toc.html#TOC350">Two dimensional histograms</A></H2>
<P>
<A NAME="IDX1777"></A>
<A NAME="IDX1778"></A>
</P>
<P>
A two dimensional histogram consists of a set of <I>bins</I> which count
the number of events falling in a given area of the (x,y)
plane. The simplest way to use a two dimensional histogram is to record
two-dimensional position information, n(x,y). Another possibility
is to form a <I>joint distribution</I> by recording related
variables. For example a detector might record both the position of an
event (x) and the amount of energy it deposited E. These
could be histogrammed as the joint distribution n(x,E).
</P>
<H2><A NAME="SEC351" HREF="gsl-ref_toc.html#TOC351">The 2D histogram struct</A></H2>
<P>
Two dimensional histograms are defined by the following struct,
</P>
<P>
<DL>
<DT><U>Data Type:</U> <B>gsl_histogram2d</B>
<DD><A NAME="IDX1779"></A>
<DL COMPACT>
<DT><CODE>size_t nx, ny</CODE>
<DD>
This is the number of histogram bins in the x and y directions.
<DT><CODE>double * xrange</CODE>
<DD>
The ranges of the bins in the x-direction are stored in an array of
<VAR>nx + 1</VAR> elements pointed to by <VAR>xrange</VAR>.
<DT><CODE>double * yrange</CODE>
<DD>
The ranges of the bins in the y-direction are stored in an array of
<VAR>ny + 1</VAR> pointed to by <VAR>yrange</VAR>.
<DT><CODE>double * bin</CODE>
<DD>
The counts for each bin are stored in an array pointed to by <VAR>bin</VAR>.
The bins are floating-point numbers, so you can increment them by
non-integer values if necessary. The array <VAR>bin</VAR> stores the two
dimensional array of bins in a single block of memory according to the
mapping <CODE>bin(i,j)</CODE> = <CODE>bin[i * ny + j]</CODE>.
</DL>
</DL>
<P>
The range for <CODE>bin(i,j)</CODE> is given by <CODE>xrange[i]</CODE> to
<CODE>xrange[i+1]</CODE> in the x-direction and <CODE>yrange[j]</CODE> to
<CODE>yrange[j+1]</CODE> in the y-direction. Each bin is inclusive at the lower
end and exclusive at the upper end. Mathematically this means that the
bins are defined by the following inequality,
</P>
<PRE class="display">
bin(i,j) corresponds to xrange[i] <= x < xrange[i+1]
and yrange[j] <= y < yrange[j+1]
</PRE>
<P>
Note that any samples which fall on the upper sides of the histogram are
excluded. If you want to include these values for the side bins you will
need to add an extra row or column to your histogram.
</P>
<P>
The <CODE>gsl_histogram2d</CODE> struct and its associated functions are
defined in the header file <TT>'gsl_histogram2d.h'</TT>.
</P>
<H2><A NAME="SEC352" HREF="gsl-ref_toc.html#TOC352">2D Histogram allocation</A></H2>
<P>
The functions for allocating memory to a 2D histogram follow the style
of <CODE>malloc</CODE> and <CODE>free</CODE>. In addition they also perform their
own error checking. If there is insufficient memory available to
allocate a histogram then the functions call the error handler (with
an error number of <CODE>GSL_ENOMEM</CODE>) in addition to returning a null
pointer. Thus if you use the library error handler to abort your program
then it isn't necessary to check every 2D histogram <CODE>alloc</CODE>.
</P>
<P>
<DL>
<DT><U>Function:</U> gsl_histogram2d * <B>gsl_histogram2d_alloc</B> <I>(size_t <VAR>nx</VAR>, size_t <VAR>ny</VAR>)</I>
<DD><A NAME="IDX1780"></A>
This function allocates memory for a two-dimensional histogram with
<VAR>nx</VAR> bins in the x direction and <VAR>ny</VAR> bins in the y direction.
The function returns a pointer to a newly created <CODE>gsl_histogram2d</CODE>
struct. If insufficient memory is available a null pointer is returned
and the error handler is invoked with an error code of
<CODE>GSL_ENOMEM</CODE>. The bins and ranges must be initialized with one of
the functions below before the histogram is ready for use.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_set_ranges</B> <I>(gsl_histogram2d * <VAR>h</VAR>, const double <VAR>xrange</VAR>[], size_t <VAR>xsize</VAR>, const double <VAR>yrange</VAR>[], size_t <VAR>ysize</VAR>)</I>
<DD><A NAME="IDX1781"></A>
This function sets the ranges of the existing histogram <VAR>h</VAR> using
the arrays <VAR>xrange</VAR> and <VAR>yrange</VAR> of size <VAR>xsize</VAR> and
<VAR>ysize</VAR> respectively. The values of the histogram bins are reset to
zero.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_set_ranges_uniform</B> <I>(gsl_histogram2d * <VAR>h</VAR>, double <VAR>xmin</VAR>, double <VAR>xmax</VAR>, double <VAR>ymin</VAR>, double <VAR>ymax</VAR>)</I>
<DD><A NAME="IDX1782"></A>
This function sets the ranges of the existing histogram <VAR>h</VAR> to cover
the ranges <VAR>xmin</VAR> to <VAR>xmax</VAR> and <VAR>ymin</VAR> to <VAR>ymax</VAR>
uniformly. The values of the histogram bins are reset to zero.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_histogram2d_free</B> <I>(gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1783"></A>
This function frees the 2D histogram <VAR>h</VAR> and all of the memory
associated with it.
</DL>
</P>
<H2><A NAME="SEC353" HREF="gsl-ref_toc.html#TOC353">Copying 2D Histograms</A></H2>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_memcpy</B> <I>(gsl_histogram2d * <VAR>dest</VAR>, const gsl_histogram2d * <VAR>src</VAR>)</I>
<DD><A NAME="IDX1784"></A>
This function copies the histogram <VAR>src</VAR> into the pre-existing
histogram <VAR>dest</VAR>, making <VAR>dest</VAR> into an exact copy of <VAR>src</VAR>.
The two histograms must be of the same size.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> gsl_histogram2d * <B>gsl_histogram2d_clone</B> <I>(const gsl_histogram2d * <VAR>src</VAR>)</I>
<DD><A NAME="IDX1785"></A>
This function returns a pointer to a newly created histogram which is an
exact copy of the histogram <VAR>src</VAR>.
</DL>
</P>
<H2><A NAME="SEC354" HREF="gsl-ref_toc.html#TOC354">Updating and accessing 2D histogram elements</A></H2>
<P>
You can access the bins of a two-dimensional histogram either by
specifying a pair of (x,y) coordinates or by using the bin
indices (i,j) directly. The functions for accessing the histogram
through (x,y) coordinates use binary searches in the x and y
directions to identify the bin which covers the appropriate range.
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_increment</B> <I>(gsl_histogram2d * <VAR>h</VAR>, double <VAR>x</VAR>, double <VAR>y</VAR>)</I>
<DD><A NAME="IDX1786"></A>
This function updates the histogram <VAR>h</VAR> by adding one (1.0) to the
bin whose x and y ranges contain the coordinates (<VAR>x</VAR>,<VAR>y</VAR>).
</P>
<P>
If the point (x,y) lies inside the valid ranges of the
histogram then the function returns zero to indicate success. If
(x,y) lies outside the limits of the histogram then the
function returns <CODE>GSL_EDOM</CODE>, and none of the bins are modified. The
error handler is not called, since it is often necessary to compute
histograms for a small range of a larger dataset, ignoring any
coordinates outside the range of interest.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_accumulate</B> <I>(gsl_histogram2d * <VAR>h</VAR>, double <VAR>x</VAR>, double <VAR>y</VAR>, double <VAR>weight</VAR>)</I>
<DD><A NAME="IDX1787"></A>
This function is similar to <CODE>gsl_histogram2d_increment</CODE> but increases
the value of the appropriate bin in the histogram <VAR>h</VAR> by the
floating-point number <VAR>weight</VAR>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_get</B> <I>(const gsl_histogram2d * <VAR>h</VAR>, size_t <VAR>i</VAR>, size_t <VAR>j</VAR>)</I>
<DD><A NAME="IDX1788"></A>
This function returns the contents of the (<VAR>i</VAR>,<VAR>j</VAR>)th bin of the
histogram <VAR>h</VAR>. If (<VAR>i</VAR>,<VAR>j</VAR>) lies outside the valid range of
indices for the histogram then the error handler is called with an error
code of <CODE>GSL_EDOM</CODE> and the function returns 0.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_get_xrange</B> <I>(const gsl_histogram2d * <VAR>h</VAR>, size_t <VAR>i</VAR>, double * <VAR>xlower</VAR>, double * <VAR>xupper</VAR>)</I>
<DD><A NAME="IDX1789"></A>
<DT><U>Function:</U> int <B>gsl_histogram2d_get_yrange</B> <I>(const gsl_histogram2d * <VAR>h</VAR>, size_t <VAR>j</VAR>, double * <VAR>ylower</VAR>, double * <VAR>yupper</VAR>)</I>
<DD><A NAME="IDX1790"></A>
These functions find the upper and lower range limits of the <VAR>i</VAR>-th
and <VAR>j</VAR>-th bins in the x and y directions of the histogram <VAR>h</VAR>.
The range limits are stored in <VAR>xlower</VAR> and <VAR>xupper</VAR> or
<VAR>ylower</VAR> and <VAR>yupper</VAR>. The lower limits are inclusive
(i.e. events with these coordinates are included in the bin) and the
upper limits are exclusive (i.e. events with the value of the upper
limit are not included and fall in the neighboring higher bin, if it
exists). The functions return 0 to indicate success. If <VAR>i</VAR> or
<VAR>j</VAR> lies outside the valid range of indices for the histogram then
the error handler is called with an error code of <CODE>GSL_EDOM</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_xmax</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1791"></A>
<DT><U>Function:</U> double <B>gsl_histogram2d_xmin</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1792"></A>
<DT><U>Function:</U> size_t <B>gsl_histogram2d_nx</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1793"></A>
<DT><U>Function:</U> double <B>gsl_histogram2d_ymax</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1794"></A>
<DT><U>Function:</U> double <B>gsl_histogram2d_ymin</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1795"></A>
<DT><U>Function:</U> size_t <B>gsl_histogram2d_ny</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1796"></A>
These functions return the maximum upper and minimum lower range limits
and the number of bins for the x and y directions of the histogram
<VAR>h</VAR>. They provide a way of determining these values without
accessing the <CODE>gsl_histogram2d</CODE> struct directly.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_histogram2d_reset</B> <I>(gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1797"></A>
This function resets all the bins of the histogram <VAR>h</VAR> to zero.
</DL>
</P>
<H2><A NAME="SEC355" HREF="gsl-ref_toc.html#TOC355">Searching 2D histogram ranges</A></H2>
<P>
The following functions are used by the access and update routines to
locate the bin which corresponds to a given (x,y) coordinate.
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_find</B> <I>(const gsl_histogram2d * <VAR>h</VAR>, double <VAR>x</VAR>, double <VAR>y</VAR>, size_t * <VAR>i</VAR>, size_t * <VAR>j</VAR>)</I>
<DD><A NAME="IDX1798"></A>
This function finds and sets the indices <VAR>i</VAR> and <VAR>j</VAR> to the to
the bin which covers the coordinates (<VAR>x</VAR>,<VAR>y</VAR>). The bin is
located using a binary search. The search includes an optimization for
histogram with uniform ranges, and will return the correct bin immediately
in this case. If (x,y) is found then the function sets the
indices (<VAR>i</VAR>,<VAR>j</VAR>) and returns <CODE>GSL_SUCCESS</CODE>. If
(x,y) lies outside the valid range of the histogram then the
function returns <CODE>GSL_EDOM</CODE> and the error handler is invoked.
</DL>
</P>
<H2><A NAME="SEC356" HREF="gsl-ref_toc.html#TOC356">2D Histogram Statistics</A></H2>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_max_val</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1799"></A>
This function returns the maximum value contained in the histogram bins.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_histogram2d_max_bin</B> <I>(const gsl_histogram2d * <VAR>h</VAR>, size_t * <VAR>i</VAR>, size_t * <VAR>j</VAR>)</I>
<DD><A NAME="IDX1800"></A>
This function returns the indices (<VAR>i</VAR>,<VAR>j</VAR>) of the bin
containing the maximum value in the histogram <VAR>h</VAR>. In the case where
several bins contain the same maximum value the first bin found is
returned.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_min_val</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1801"></A>
This function returns the minimum value contained in the histogram bins.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_histogram2d_min_bin</B> <I>(const gsl_histogram2d * <VAR>h</VAR>, size_t * <VAR>i</VAR>, size_t * <VAR>j</VAR>)</I>
<DD><A NAME="IDX1802"></A>
This function returns the indices (<VAR>i</VAR>,<VAR>j</VAR>) of the bin
containing the minimum value in the histogram <VAR>h</VAR>. In the case where
several bins contain the same maximum value the first bin found is
returned.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_xmean</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1803"></A>
This function returns the mean of the histogrammed x variable, where the
histogram is regarded as a probability distribution. Negative bin values
are ignored for the purposes of this calculation.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_ymean</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1804"></A>
This function returns the mean of the histogrammed y variable, where the
histogram is regarded as a probability distribution. Negative bin values
are ignored for the purposes of this calculation.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_xsigma</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1805"></A>
This function returns the standard deviation of the histogrammed
x variable, where the histogram is regarded as a probability
distribution. Negative bin values are ignored for the purposes of this
calculation.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_ysigma</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1806"></A>
This function returns the standard deviation of the histogrammed
y variable, where the histogram is regarded as a probability
distribution. Negative bin values are ignored for the purposes of this
calculation.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_cov</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1807"></A>
This function returns the covariance of the histogrammed x and y
variables, where the histogram is regarded as a probability
distribution. Negative bin values are ignored for the purposes of this
calculation.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_histogram2d_sum</B> <I>(const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1808"></A>
This function returns the sum of all bin values. Negative bin values
are included in the sum.
</DL>
</P>
<H2><A NAME="SEC357" HREF="gsl-ref_toc.html#TOC357">2D Histogram Operations</A></H2>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_equal_bins_p</B> <I>(const gsl_histogram2d *<VAR>h1</VAR>, const gsl_histogram2d *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1809"></A>
This function returns 1 if the all of the individual bin ranges of the
two histograms are identical, and 0 otherwise.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_add</B> <I>(gsl_histogram2d *<VAR>h1</VAR>, const gsl_histogram2d *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1810"></A>
This function adds the contents of the bins in histogram <VAR>h2</VAR> to the
corresponding bins of histogram <VAR>h1</VAR>,
i.e. h'_1(i,j) = h_1(i,j) + h_2(i,j).
The two histograms must have identical bin ranges.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_sub</B> <I>(gsl_histogram2d *<VAR>h1</VAR>, const gsl_histogram2d *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1811"></A>
This function subtracts the contents of the bins in histogram <VAR>h2</VAR> from the
corresponding bins of histogram <VAR>h1</VAR>,
i.e. h'_1(i,j) = h_1(i,j) - h_2(i,j).
The two histograms must have identical bin ranges.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_mul</B> <I>(gsl_histogram2d *<VAR>h1</VAR>, const gsl_histogram2d *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1812"></A>
This function multiplies the contents of the bins of histogram <VAR>h1</VAR>
by the contents of the corresponding bins in histogram <VAR>h2</VAR>,
i.e. h'_1(i,j) = h_1(i,j) * h_2(i,j).
The two histograms must have identical bin ranges.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_div</B> <I>(gsl_histogram2d *<VAR>h1</VAR>, const gsl_histogram2d *<VAR>h2</VAR>)</I>
<DD><A NAME="IDX1813"></A>
This function divides the contents of the bins of histogram <VAR>h1</VAR>
by the contents of the corresponding bins in histogram <VAR>h2</VAR>,
i.e. h'_1(i,j) = h_1(i,j) / h_2(i,j).
The two histograms must have identical bin ranges.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_scale</B> <I>(gsl_histogram2d *<VAR>h</VAR>, double <VAR>scale</VAR>)</I>
<DD><A NAME="IDX1814"></A>
This function multiplies the contents of the bins of histogram <VAR>h</VAR>
by the constant <VAR>scale</VAR>, i.e.
h'_1(i,j) = h_1(i,j) scale.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_shift</B> <I>(gsl_histogram2d *<VAR>h</VAR>, double <VAR>offset</VAR>)</I>
<DD><A NAME="IDX1815"></A>
This function shifts the contents of the bins of histogram <VAR>h</VAR>
by the constant <VAR>offset</VAR>, i.e.
h'_1(i,j) = h_1(i,j) + offset.
</DL>
</P>
<H2><A NAME="SEC358" HREF="gsl-ref_toc.html#TOC358">Reading and writing 2D histograms</A></H2>
<P>
The library provides functions for reading and writing two dimensional
histograms to a file as binary data or formatted text.
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_fwrite</B> <I>(FILE * <VAR>stream</VAR>, const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1816"></A>
This function writes the ranges and bins of the histogram <VAR>h</VAR> to the
stream <VAR>stream</VAR> in binary format. The return value is 0 for success
and <CODE>GSL_EFAILED</CODE> if there was a problem writing to the file. Since
the data is written in the native binary format it may not be portable
between different architectures.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_fread</B> <I>(FILE * <VAR>stream</VAR>, gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1817"></A>
This function reads into the histogram <VAR>h</VAR> from the stream
<VAR>stream</VAR> in binary format. The histogram <VAR>h</VAR> must be
preallocated with the correct size since the function uses the number of
x and y bins in <VAR>h</VAR> to determine how many bytes to read. The return
value is 0 for success and <CODE>GSL_EFAILED</CODE> if there was a problem
reading from the file. The data is assumed to have been written in the
native binary format on the same architecture.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_fprintf</B> <I>(FILE * <VAR>stream</VAR>, const gsl_histogram2d * <VAR>h</VAR>, const char * <VAR>range_format</VAR>, const char * <VAR>bin_format</VAR>)</I>
<DD><A NAME="IDX1818"></A>
This function writes the ranges and bins of the histogram <VAR>h</VAR>
line-by-line to the stream <VAR>stream</VAR> using the format specifiers
<VAR>range_format</VAR> and <VAR>bin_format</VAR>. These should be one of the
<CODE>%g</CODE>, <CODE>%e</CODE> or <CODE>%f</CODE> formats for floating point
numbers. The function returns 0 for success and <CODE>GSL_EFAILED</CODE> if
there was a problem writing to the file. The histogram output is
formatted in five columns, and the columns are separated by spaces,
like this,
</P>
<PRE class="smallexample">
xrange[0] xrange[1] yrange[0] yrange[1] bin(0,0)
xrange[0] xrange[1] yrange[1] yrange[2] bin(0,1)
xrange[0] xrange[1] yrange[2] yrange[3] bin(0,2)
....
xrange[0] xrange[1] yrange[ny-1] yrange[ny] bin(0,ny-1)
xrange[1] xrange[2] yrange[0] yrange[1] bin(1,0)
xrange[1] xrange[2] yrange[1] yrange[2] bin(1,1)
xrange[1] xrange[2] yrange[1] yrange[2] bin(1,2)
....
xrange[1] xrange[2] yrange[ny-1] yrange[ny] bin(1,ny-1)
....
xrange[nx-1] xrange[nx] yrange[0] yrange[1] bin(nx-1,0)
xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,1)
xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,2)
....
xrange[nx-1] xrange[nx] yrange[ny-1] yrange[ny] bin(nx-1,ny-1)
</PRE>
<P>
Each line contains the lower and upper limits of the bin and the
contents of the bin. Since the upper limits of the each bin are the
lower limits of the neighboring bins there is duplication of these
values but this allows the histogram to be manipulated with
line-oriented tools.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_fscanf</B> <I>(FILE * <VAR>stream</VAR>, gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1819"></A>
This function reads formatted data from the stream <VAR>stream</VAR> into the
histogram <VAR>h</VAR>. The data is assumed to be in the five-column format
used by <CODE>gsl_histogram_fprintf</CODE>. The histogram <VAR>h</VAR> must be
preallocated with the correct lengths since the function uses the sizes
of <VAR>h</VAR> to determine how many numbers to read. The function returns 0
for success and <CODE>GSL_EFAILED</CODE> if there was a problem reading from
the file.
</DL>
</P>
<H2><A NAME="SEC359" HREF="gsl-ref_toc.html#TOC359">Resampling from 2D histograms</A></H2>
<P>
As in the one-dimensional case, a two-dimensional histogram made by
counting events can be regarded as a measurement of a probability
distribution. Allowing for statistical error, the height of each bin
represents the probability of an event where (x,y) falls in
the range of that bin. For a two-dimensional histogram the probability
distribution takes the form p(x,y) dx dy where,
</P>
<PRE class="example">
p(x,y) = n_{ij}/ (N A_{ij})
</PRE>
<P>
In this equation
n_{ij} is the number of events in the bin which
contains (x,y),
A_{ij} is the area of the bin and N is
the total number of events. The distribution of events within each bin
is assumed to be uniform.
</P>
<P>
<DL>
<DT><U>Data Type:</U> <B>gsl_histogram2d_pdf</B>
<DD><A NAME="IDX1820"></A>
<DL COMPACT>
<DT><CODE>size_t nx, ny</CODE>
<DD>
This is the number of histogram bins used to approximate the probability
distribution function in the x and y directions.
<DT><CODE>double * xrange</CODE>
<DD>
The ranges of the bins in the x-direction are stored in an array of
<VAR>nx + 1</VAR> elements pointed to by <VAR>xrange</VAR>.
<DT><CODE>double * yrange</CODE>
<DD>
The ranges of the bins in the y-direction are stored in an array of
<VAR>ny + 1</VAR> pointed to by <VAR>yrange</VAR>.
<DT><CODE>double * sum</CODE>
<DD>
The cumulative probability for the bins is stored in an array of
<VAR>nx</VAR>*<VAR>ny</VAR> elements pointed to by <VAR>sum</VAR>.
</DL>
</DL>
<P>
The following functions allow you to create a <CODE>gsl_histogram2d_pdf</CODE>
struct which represents a two dimensional probability distribution and
generate random samples from it.
</P>
<P>
<DL>
<DT><U>Function:</U> gsl_histogram2d_pdf * <B>gsl_histogram2d_pdf_alloc</B> <I>(size_t <VAR>nx</VAR>, size_t <VAR>ny</VAR>)</I>
<DD><A NAME="IDX1821"></A>
This function allocates memory for a two-dimensional probability
distribution of size <VAR>nx</VAR>-by-<VAR>ny</VAR> and returns a pointer to a
newly initialized <CODE>gsl_histogram2d_pdf</CODE> struct. If insufficient
memory is available a null pointer is returned and the error handler is
invoked with an error code of <CODE>GSL_ENOMEM</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_pdf_init</B> <I>(gsl_histogram2d_pdf * <VAR>p</VAR>, const gsl_histogram2d * <VAR>h</VAR>)</I>
<DD><A NAME="IDX1822"></A>
This function initializes the two-dimensional probability distribution
calculated <VAR>p</VAR> from the histogram <VAR>h</VAR>. If any of the bins of
<VAR>h</VAR> are negative then the error handler is invoked with an error
code of <CODE>GSL_EDOM</CODE> because a probability distribution cannot
contain negative values.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_histogram2d_pdf_free</B> <I>(gsl_histogram2d_pdf * <VAR>p</VAR>)</I>
<DD><A NAME="IDX1823"></A>
This function frees the two-dimensional probability distribution
function <VAR>p</VAR> and all of the memory associated with it.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_histogram2d_pdf_sample</B> <I>(const gsl_histogram2d_pdf * <VAR>p</VAR>, double <VAR>r1</VAR>, double <VAR>r2</VAR>, double * <VAR>x</VAR>, double * <VAR>y</VAR>)</I>
<DD><A NAME="IDX1824"></A>
This function uses two uniform random numbers between zero and one,
<VAR>r1</VAR> and <VAR>r2</VAR>, to compute a single random sample from the
two-dimensional probability distribution <VAR>p</VAR>.
</DL>
</P>
<H2><A NAME="SEC360" HREF="gsl-ref_toc.html#TOC360">Example programs for 2D histograms</A></H2>
<P>
This program demonstrates two features of two-dimensional histograms.
First a 10-by-10 two-dimensional histogram is created with x and y running
from 0 to 1. Then a few sample points are added to the histogram, at
(0.3,0.3) with a height of 1, at (0.8,0.1) with a height of 5 and at
(0.7,0.9) with a height of 0.5. This histogram with three events is
used to generate a random sample of 1000 simulated events, which are
printed out.
</P>
<PRE class="example">
#include <stdio.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_histogram2d.h>
int
main (void)
{
const gsl_rng_type * T;
gsl_rng * r;
gsl_histogram2d * h = gsl_histogram2d_alloc (10, 10);
gsl_histogram2d_set_ranges_uniform (h,
0.0, 1.0,
0.0, 1.0);
gsl_histogram2d_accumulate (h, 0.3, 0.3, 1);
gsl_histogram2d_accumulate (h, 0.8, 0.1, 5);
gsl_histogram2d_accumulate (h, 0.7, 0.9, 0.5);
gsl_rng_env_setup ();
T = gsl_rng_default;
r = gsl_rng_alloc (T);
{
int i;
gsl_histogram2d_pdf * p
= gsl_histogram2d_pdf_alloc (h->nx, h->ny);
gsl_histogram2d_pdf_init (p, h);
for (i = 0; i < 1000; i++) {
double x, y;
double u = gsl_rng_uniform (r);
double v = gsl_rng_uniform (r);
gsl_histogram2d_pdf_sample (p, u, v, &x, &y);
printf ("%g %g\n", x, y);
}
}
return 0;
}
</PRE>
<P>
The following plot shows the distribution of the simulated events. Using
a higher resolution grid we can see the original underlying histogram
and also the statistical fluctuations caused by the events being
uniformly distributed over the area of the original bins.
</P>
<P><HR><P>
<p>Go to the <A HREF="gsl-ref_1.html">first</A>, <A HREF="gsl-ref_20.html">previous</A>, <A HREF="gsl-ref_22.html">next</A>, <A HREF="gsl-ref_50.html">last</A> section, <A HREF="gsl-ref_toc.html">table of contents</A>.
</BODY>
</HTML>
|