1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.54+ (gsl)
from ../gsl-ref.texi -->
<TITLE>GNU Scientific Library -- Reference Manual - One dimensional Minimization</TITLE>
<!-- <LINK rel="stylesheet" title="Default Style Sheet" href="/css/texinfo.css" type="text/css"> -->
<link href="gsl-ref_34.html" rel=Next>
<link href="gsl-ref_32.html" rel=Previous>
<link href="gsl-ref_toc.html" rel=ToC>
</HEAD>
<BODY>
<p>Go to the <A HREF="gsl-ref_1.html">first</A>, <A HREF="gsl-ref_32.html">previous</A>, <A HREF="gsl-ref_34.html">next</A>, <A HREF="gsl-ref_50.html">last</A> section, <A HREF="gsl-ref_toc.html">table of contents</A>.
<P><HR><P>
<H1><A NAME="SEC440" HREF="gsl-ref_toc.html#TOC440">One dimensional Minimization</A></H1>
<P>
<A NAME="IDX2113"></A>
<A NAME="IDX2114"></A>
<A NAME="IDX2115"></A>
<A NAME="IDX2116"></A>
<A NAME="IDX2117"></A>
</P>
<P>
This chapter describes routines for finding minima of arbitrary
one-dimensional functions. The library provides low level components
for a variety of iterative minimizers and convergence tests. These can be
combined by the user to achieve the desired solution, with full access
to the intermediate steps of the algorithms. Each class of methods uses
the same framework, so that you can switch between minimizers at runtime
without needing to recompile your program. Each instance of a minimizer
keeps track of its own state, allowing the minimizers to be used in
multi-threaded programs.
</P>
<P>
The header file <TT>'gsl_min.h'</TT> contains prototypes for the
minimization functions and related declarations. To use the minimization
algorithms to find the maximum of a function simply invert its sign.
</P>
<H2><A NAME="SEC441" HREF="gsl-ref_toc.html#TOC441">Overview</A></H2>
<P>
<A NAME="IDX2118"></A>
</P>
<P>
The minimization algorithms begin with a bounded region known to contain
a minimum. The region is described by a lower bound a and an
upper bound b, with an estimate of the location of the minimum
x.
</P>
<P>
The value of the function at x must be less than the value of the
function at the ends of the interval,
</P>
<PRE class="example">
f(a) > f(x) < f(b)
</PRE>
<P>
This condition guarantees that a minimum is contained somewhere within
the interval. On each iteration a new point x' is selected using
one of the available algorithms. If the new point is a better estimate
of the minimum, f(x') < f(x), then the current estimate of the
minimum x is updated. The new point also allows the size of the
bounded interval to be reduced, by choosing the most compact set of
points which satisfies the constraint f(a) > f(x) < f(b). The
interval is reduced until it encloses the true minimum to a desired
tolerance. This provides a best estimate of the location of the minimum
and a rigorous error estimate.
</P>
<P>
Several bracketing algorithms are available within a single framework.
The user provides a high-level driver for the algorithm, and the
library provides the individual functions necessary for each of the
steps. There are three main phases of the iteration. The steps are,
</P>
<UL class="itemize">
<LI>
initialize minimizer state, <VAR>s</VAR>, for algorithm <VAR>T</VAR>
<LI>
update <VAR>s</VAR> using the iteration <VAR>T</VAR>
<LI>
test <VAR>s</VAR> for convergence, and repeat iteration if necessary
</UL>
<P>
The state for the minimizers is held in a <CODE>gsl_min_fminimizer</CODE>
struct. The updating procedure uses only function evaluations (not
derivatives).
</P>
<H2><A NAME="SEC442" HREF="gsl-ref_toc.html#TOC442">Caveats</A></H2>
<P>
<A NAME="IDX2119"></A>
</P>
<P>
Note that minimization functions can only search for one minimum at a
time. When there are several minima in the search area, the first
minimum to be found will be returned; however it is difficult to predict
which of the minima this will be. <EM>In most cases, no error will be
reported if you try to find a minimum in an area where there is more
than one.</EM>
</P>
<P>
With all minimization algorithms it can be difficult to determine the
location of the minimum to full numerical precision. The behavior of the
function in the region of the minimum x^* can be approximated by
a Taylor expansion,
</P>
<PRE class="example">
y = f(x^*) + (1/2) f"(x^*) (x - x^*)^2
</PRE>
<P>
and the second term of this expansion can be lost when added to the
first term at finite precision. This magnifies the error in locating
x^*, making it proportional to \sqrt \epsilon (where
\epsilon is the relative accuracy of the floating point numbers).
For functions with higher order minima, such as x^4, the
magnification of the error is correspondingly worse. The best that can
be achieved is to converge to the limit of numerical accuracy in the
function values, rather than the location of the minimum itself.
</P>
<H2><A NAME="SEC443" HREF="gsl-ref_toc.html#TOC443">Initializing the Minimizer</A></H2>
<P>
<DL>
<DT><U>Function:</U> gsl_min_fminimizer * <B>gsl_min_fminimizer_alloc</B> <I>(const gsl_min_fminimizer_type * <VAR>T</VAR>)</I>
<DD><A NAME="IDX2120"></A>
This function returns a pointer to a newly allocated instance of a
minimizer of type <VAR>T</VAR>. For example, the following code
creates an instance of a golden section minimizer,
</P>
<PRE class="example">
const gsl_min_fminimizer_type * T
= gsl_min_fminimizer_goldensection;
gsl_min_fminimizer * s
= gsl_min_fminimizer_alloc (T);
</PRE>
<P>
If there is insufficient memory to create the minimizer then the function
returns a null pointer and the error handler is invoked with an error
code of <CODE>GSL_ENOMEM</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_min_fminimizer_set</B> <I>(gsl_min_fminimizer * <VAR>s</VAR>, gsl_function * <VAR>f</VAR>, double <VAR>x_minimum</VAR>, double <VAR>x_lower</VAR>, double <VAR>x_upper</VAR>)</I>
<DD><A NAME="IDX2121"></A>
This function sets, or resets, an existing minimizer <VAR>s</VAR> to use the
function <VAR>f</VAR> and the initial search interval [<VAR>x_lower</VAR>,
<VAR>x_upper</VAR>], with a guess for the location of the minimum
<VAR>x_minimum</VAR>.
</P>
<P>
If the interval given does not contain a minimum, then the function
returns an error code of <CODE>GSL_FAILURE</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_min_fminimizer_set_with_values</B> <I>(gsl_min_fminimizer * <VAR>s</VAR>, gsl_function * <VAR>f</VAR>, double <VAR>x_minimum</VAR>, double <VAR>f_minimum</VAR>, double <VAR>x_lower</VAR>, double <VAR>f_lower</VAR>, double <VAR>x_upper</VAR>, double <VAR>f_upper</VAR>)</I>
<DD><A NAME="IDX2122"></A>
This function is equivalent to <CODE>gsl_min_fminimizer_set</CODE> but uses
the values <VAR>f_minimum</VAR>, <VAR>f_lower</VAR> and <VAR>f_upper</VAR> instead of
computing <CODE>f(x_minimum)</CODE>, <CODE>f(x_lower)</CODE> and <CODE>f(x_upper)</CODE>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> void <B>gsl_min_fminimizer_free</B> <I>(gsl_min_fminimizer * <VAR>s</VAR>)</I>
<DD><A NAME="IDX2123"></A>
This function frees all the memory associated with the minimizer
<VAR>s</VAR>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> const char * <B>gsl_min_fminimizer_name</B> <I>(const gsl_min_fminimizer * <VAR>s</VAR>)</I>
<DD><A NAME="IDX2124"></A>
This function returns a pointer to the name of the minimizer. For example,
</P>
<PRE class="example">
printf ("s is a '%s' minimizer\n",
gsl_min_fminimizer_name (s));
</PRE>
<P>
would print something like <CODE>s is a 'brent' minimizer</CODE>.
</DL>
</P>
<H2><A NAME="SEC444" HREF="gsl-ref_toc.html#TOC444">Providing the function to minimize</A></H2>
<P>
<A NAME="IDX2125"></A>
</P>
<P>
You must provide a continuous function of one variable for the
minimizers to operate on. In order to allow for general parameters the
functions are defined by a <CODE>gsl_function</CODE> data type
(see section <A HREF="gsl-ref_32.html#SEC432">Providing the function to solve</A>).
</P>
<H2><A NAME="SEC445" HREF="gsl-ref_toc.html#TOC445">Iteration</A></H2>
<P>
The following functions drive the iteration of each algorithm. Each
function performs one iteration to update the state of any minimizer of the
corresponding type. The same functions work for all minimizers so that
different methods can be substituted at runtime without modifications to
the code.
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_min_fminimizer_iterate</B> <I>(gsl_min_fminimizer * <VAR>s</VAR>)</I>
<DD><A NAME="IDX2126"></A>
This function performs a single iteration of the minimizer <VAR>s</VAR>. If the
iteration encounters an unexpected problem then an error code will be
returned,
</P>
<DL COMPACT>
<DT><CODE>GSL_EBADFUNC</CODE>
<DD>
the iteration encountered a singular point where the function evaluated
to <CODE>Inf</CODE> or <CODE>NaN</CODE>.
<DT><CODE>GSL_FAILURE</CODE>
<DD>
the algorithm could not improve the current best approximation or
bounding interval.
</DL>
</DL>
<P>
The minimizer maintains a current best estimate of the position of the
minimum at all times, and the current interval bounding the minimum.
This information can be accessed with the following auxiliary functions,
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_min_fminimizer_x_minimum</B> <I>(const gsl_min_fminimizer * <VAR>s</VAR>)</I>
<DD><A NAME="IDX2127"></A>
This function returns the current estimate of the position of the
minimum for the minimizer <VAR>s</VAR>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_min_fminimizer_x_upper</B> <I>(const gsl_min_fminimizer * <VAR>s</VAR>)</I>
<DD><A NAME="IDX2128"></A>
<DT><U>Function:</U> double <B>gsl_min_fminimizer_x_lower</B> <I>(const gsl_min_fminimizer * <VAR>s</VAR>)</I>
<DD><A NAME="IDX2129"></A>
These functions return the current upper and lower bound of the interval
for the minimizer <VAR>s</VAR>.
</DL>
</P>
<P>
<DL>
<DT><U>Function:</U> double <B>gsl_min_fminimizer_f_minimum</B> <I>(const gsl_min_fminimizer *<VAR>s</VAR>)</I>
<DD><A NAME="IDX2130"></A>
<DT><U>Function:</U> double <B>gsl_min_fminimizer_f_upper</B> <I>(const gsl_min_fminimizer *<VAR>s</VAR>)</I>
<DD><A NAME="IDX2131"></A>
<DT><U>Function:</U> double <B>gsl_min_fminimizer_f_lower</B> <I>(const gsl_min_fminimizer *<VAR>s</VAR>)</I>
<DD><A NAME="IDX2132"></A>
These functions return the value of the function at the current estimate
of the minimum and at the upper and lower bounds of interval for the
minimizer <VAR>s</VAR>.
</DL>
</P>
<H2><A NAME="SEC446" HREF="gsl-ref_toc.html#TOC446">Stopping Parameters</A></H2>
<P>
<A NAME="IDX2133"></A>
</P>
<P>
A minimization procedure should stop when one of the following
conditions is true:
</P>
<UL class="itemize">
<LI>
A minimum has been found to within the user-specified precision.
<LI>
A user-specified maximum number of iterations has been reached.
<LI>
An error has occurred.
</UL>
<P>
The handling of these conditions is under user control. The function
below allows the user to test the precision of the current result.
</P>
<P>
<DL>
<DT><U>Function:</U> int <B>gsl_min_test_interval</B> <I>(double <VAR>x_lower</VAR>, double <VAR>x_upper</VAR>, double <VAR>epsabs</VAR>, double <VAR>epsrel</VAR>)</I>
<DD><A NAME="IDX2134"></A>
This function tests for the convergence of the interval [<VAR>x_lower</VAR>,
<VAR>x_upper</VAR>] with absolute error <VAR>epsabs</VAR> and relative error
<VAR>epsrel</VAR>. The test returns <CODE>GSL_SUCCESS</CODE> if the following
condition is achieved,
</P>
<PRE class="example">
|a - b| < epsabs + epsrel min(|a|,|b|)
</PRE>
<P>
when the interval x = [a,b] does not include the origin. If the
interval includes the origin then \min(|a|,|b|) is replaced by
zero (which is the minimum value of |x| over the interval). This
ensures that the relative error is accurately estimated for minima close
to the origin.
</P>
<P>
This condition on the interval also implies that any estimate of the
minimum x_m in the interval satisfies the same condition with respect
to the true minimum x_m^*,
</P>
<PRE class="example">
|x_m - x_m^*| < epsabs + epsrel x_m^*
</PRE>
<P>
assuming that the true minimum x_m^* is contained within the interval.
</DL>
</P>
<H2><A NAME="SEC447" HREF="gsl-ref_toc.html#TOC447">Minimization Algorithms</A></H2>
<P>
The minimization algorithms described in this section require an initial
interval which is guaranteed to contain a minimum -- if a and
b are the endpoints of the interval and x is an estimate
of the minimum then f(a) > f(x) < f(b). This ensures that the
function has at least one minimum somewhere in the interval. If a valid
initial interval is used then these algorithm cannot fail, provided the
function is well-behaved.
</P>
<P>
<DL>
<DT><U>Minimizer:</U> <B>gsl_min_fminimizer_goldensection</B>
<DD><A NAME="IDX2135"></A>
</P>
<P>
<A NAME="IDX2136"></A>
<A NAME="IDX2137"></A>
</P>
<P>
The <I>golden section algorithm</I> is the simplest method of bracketing
the minimum of a function. It is the slowest algorithm provided by the
library, with linear convergence.
</P>
<P>
On each iteration, the algorithm first compares the subintervals from
the endpoints to the current minimum. The larger subinterval is divided
in a golden section (using the famous ratio (3-\sqrt 5)/2 =
0.3189660...) and the value of the function at this new point is
calculated. The new value is used with the constraint f(a') >
f(x') < f(b') to a select new interval containing the minimum, by
discarding the least useful point. This procedure can be continued
indefinitely until the interval is sufficiently small. Choosing the
golden section as the bisection ratio can be shown to provide the
fastest convergence for this type of algorithm.
</P>
</DL>
<P>
<DL>
<DT><U>Minimizer:</U> <B>gsl_min_fminimizer_brent</B>
<DD><A NAME="IDX2138"></A>
<A NAME="IDX2139"></A>
<A NAME="IDX2140"></A>
</P>
<P>
The <I>Brent minimization algorithm</I> combines a parabolic
interpolation with the golden section algorithm. This produces a fast
algorithm which is still robust.
</P>
<P>
The outline of the algorithm can be summarized as follows: on each
iteration Brent's method approximates the function using an
interpolating parabola through three existing points. The minimum of the
parabola is taken as a guess for the minimum. If it lies within the
bounds of the current interval then the interpolating point is accepted,
and used to generate a smaller interval. If the interpolating point is
not accepted then the algorithm falls back to an ordinary golden section
step. The full details of Brent's method include some additional checks
to improve convergence.
</DL>
</P>
<H2><A NAME="SEC448" HREF="gsl-ref_toc.html#TOC448">Examples</A></H2>
<P>
The following program uses the Brent algorithm to find the minimum of
the function f(x) = \cos(x) + 1, which occurs at x = \pi.
The starting interval is (0,6), with an initial guess for the
minimum of 2.
</P>
<PRE class="example">
#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_min.h>
double fn1 (double x, void * params)
{
return cos(x) + 1.0;
}
int
main (void)
{
int status;
int iter = 0, max_iter = 100;
const gsl_min_fminimizer_type *T;
gsl_min_fminimizer *s;
double m = 2.0, m_expected = M_PI;
double a = 0.0, b = 6.0;
gsl_function F;
F.function = &fn1;
F.params = 0;
T = gsl_min_fminimizer_brent;
s = gsl_min_fminimizer_alloc (T);
gsl_min_fminimizer_set (s, &F, m, a, b);
printf ("using %s method\n",
gsl_min_fminimizer_name (s));
printf ("%5s [%9s, %9s] %9s %10s %9s\n",
"iter", "lower", "upper", "min",
"err", "err(est)");
printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
iter, a, b,
m, m - m_expected, b - a);
do
{
iter++;
status = gsl_min_fminimizer_iterate (s);
m = gsl_min_fminimizer_x_minimum (s);
a = gsl_min_fminimizer_x_lower (s);
b = gsl_min_fminimizer_x_upper (s);
status
= gsl_min_test_interval (a, b, 0.001, 0.0);
if (status == GSL_SUCCESS)
printf ("Converged:\n");
printf ("%5d [%.7f, %.7f] "
"%.7f %.7f %+.7f %.7f\n",
iter, a, b,
m, m_expected, m - m_expected, b - a);
}
while (status == GSL_CONTINUE && iter < max_iter);
return status;
}
</PRE>
<P>
Here are the results of the minimization procedure.
</P>
<PRE class="smallexample">
bash$ ./a.out
0 [0.0000000, 6.0000000] 2.0000000 -1.1415927 6.0000000
1 [2.0000000, 6.0000000] 3.2758640 +0.1342713 4.0000000
2 [2.0000000, 3.2831929] 3.2758640 +0.1342713 1.2831929
3 [2.8689068, 3.2831929] 3.2758640 +0.1342713 0.4142862
4 [2.8689068, 3.2831929] 3.2758640 +0.1342713 0.4142862
5 [2.8689068, 3.2758640] 3.1460585 +0.0044658 0.4069572
6 [3.1346075, 3.2758640] 3.1460585 +0.0044658 0.1412565
7 [3.1346075, 3.1874620] 3.1460585 +0.0044658 0.0528545
8 [3.1346075, 3.1460585] 3.1460585 +0.0044658 0.0114510
9 [3.1346075, 3.1460585] 3.1424060 +0.0008133 0.0114510
10 [3.1346075, 3.1424060] 3.1415885 -0.0000041 0.0077985
Converged:
11 [3.1415885, 3.1424060] 3.1415927 -0.0000000 0.0008175
</PRE>
<H2><A NAME="SEC449" HREF="gsl-ref_toc.html#TOC449">References and Further Reading</A></H2>
<P>
Further information on Brent's algorithm is available in the following
book,
</P>
<UL class="itemize">
<LI>
Richard Brent, <CITE>Algorithms for minimization without derivatives</CITE>,
Prentice-Hall (1973), republished by Dover in paperback (2002), ISBN
0-486-41998-3.
</UL>
<P><HR><P>
<p>Go to the <A HREF="gsl-ref_1.html">first</A>, <A HREF="gsl-ref_32.html">previous</A>, <A HREF="gsl-ref_34.html">next</A>, <A HREF="gsl-ref_50.html">last</A> section, <A HREF="gsl-ref_toc.html">table of contents</A>.
</BODY>
</HTML>
|