1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Complete Fermi-Dirac Integrals</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Complete Fermi-Dirac Integrals">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Complete Fermi-Dirac Integrals">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Fermi_002dDirac-Function.html#Fermi_002dDirac-Function" rel="up" title="Fermi-Dirac Function">
<link href="Incomplete-Fermi_002dDirac-Integrals.html#Incomplete-Fermi_002dDirac-Integrals" rel="next" title="Incomplete Fermi-Dirac Integrals">
<link href="Fermi_002dDirac-Function.html#Fermi_002dDirac-Function" rel="previous" title="Fermi-Dirac Function">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Complete-Fermi_002dDirac-Integrals"></a>
<div class="header">
<p>
Next: <a href="Incomplete-Fermi_002dDirac-Integrals.html#Incomplete-Fermi_002dDirac-Integrals" accesskey="n" rel="next">Incomplete Fermi-Dirac Integrals</a>, Up: <a href="Fermi_002dDirac-Function.html#Fermi_002dDirac-Function" accesskey="u" rel="up">Fermi-Dirac Function</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Complete-Fermi_002dDirac-Integrals-1"></a>
<h4 class="subsection">7.18.1 Complete Fermi-Dirac Integrals</h4>
<a name="index-complete-Fermi_002dDirac-integrals"></a>
<a name="index-Fj_0028x_0029_002c-Fermi_002dDirac-integral"></a>
<p>The complete Fermi-Dirac integral <em>F_j(x)</em> is given by,
</p>
<div class="example">
<pre class="example">F_j(x) := (1/\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))
</pre></div>
<p>Note that the Fermi-Dirac integral is sometimes defined without the
normalisation factor in other texts.
</p>
<dl>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005fm1"></a>Function: <em>double</em> <strong>gsl_sf_fermi_dirac_m1</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005fm1_005fe"></a>Function: <em>int</em> <strong>gsl_sf_fermi_dirac_m1_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the complete Fermi-Dirac integral with an index of <em>-1</em>.
This integral is given by
<em>F_{-1}(x) = e^x / (1 + e^x)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005f0"></a>Function: <em>double</em> <strong>gsl_sf_fermi_dirac_0</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005f0_005fe"></a>Function: <em>int</em> <strong>gsl_sf_fermi_dirac_0_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the complete Fermi-Dirac integral with an index of <em>0</em>.
This integral is given by <em>F_0(x) = \ln(1 + e^x)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005f1"></a>Function: <em>double</em> <strong>gsl_sf_fermi_dirac_1</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005f1_005fe"></a>Function: <em>int</em> <strong>gsl_sf_fermi_dirac_1_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the complete Fermi-Dirac integral with an index of <em>1</em>,
<em>F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1))</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005f2"></a>Function: <em>double</em> <strong>gsl_sf_fermi_dirac_2</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005f2_005fe"></a>Function: <em>int</em> <strong>gsl_sf_fermi_dirac_2_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the complete Fermi-Dirac integral with an index
of <em>2</em>,
<em>F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1))</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005fint"></a>Function: <em>double</em> <strong>gsl_sf_fermi_dirac_int</strong> <em>(int <var>j</var>, double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005fint_005fe"></a>Function: <em>int</em> <strong>gsl_sf_fermi_dirac_int_e</strong> <em>(int <var>j</var>, double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the complete Fermi-Dirac integral with an integer
index of <em>j</em>,
<em>F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1))</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005fmhalf"></a>Function: <em>double</em> <strong>gsl_sf_fermi_dirac_mhalf</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005fmhalf_005fe"></a>Function: <em>int</em> <strong>gsl_sf_fermi_dirac_mhalf_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the complete Fermi-Dirac integral
<em>F_{-1/2}(x)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005fhalf"></a>Function: <em>double</em> <strong>gsl_sf_fermi_dirac_half</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005fhalf_005fe"></a>Function: <em>int</em> <strong>gsl_sf_fermi_dirac_half_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the complete Fermi-Dirac integral
<em>F_{1/2}(x)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005f3half"></a>Function: <em>double</em> <strong>gsl_sf_fermi_dirac_3half</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005ffermi_005fdirac_005f3half_005fe"></a>Function: <em>int</em> <strong>gsl_sf_fermi_dirac_3half_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the complete Fermi-Dirac integral
<em>F_{3/2}(x)</em>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Incomplete-Fermi_002dDirac-Integrals.html#Incomplete-Fermi_002dDirac-Integrals" accesskey="n" rel="next">Incomplete Fermi-Dirac Integrals</a>, Up: <a href="Fermi_002dDirac-Function.html#Fermi_002dDirac-Function" accesskey="u" rel="up">Fermi-Dirac Function</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|