File: Complex-arithmetic-operators.html

package info (click to toggle)
gsl-ref-html 2.3-1
  • links: PTS
  • area: non-free
  • in suites: bullseye, buster, sid
  • size: 6,876 kB
  • ctags: 4,574
  • sloc: makefile: 35
file content (176 lines) | stat: -rw-r--r-- 9,245 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Complex arithmetic operators</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Complex arithmetic operators">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Complex arithmetic operators">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Complex-Numbers.html#Complex-Numbers" rel="up" title="Complex Numbers">
<link href="Elementary-Complex-Functions.html#Elementary-Complex-Functions" rel="next" title="Elementary Complex Functions">
<link href="Properties-of-complex-numbers.html#Properties-of-complex-numbers" rel="previous" title="Properties of complex numbers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Complex-arithmetic-operators"></a>
<div class="header">
<p>
Next: <a href="Elementary-Complex-Functions.html#Elementary-Complex-Functions" accesskey="n" rel="next">Elementary Complex Functions</a>, Previous: <a href="Properties-of-complex-numbers.html#Properties-of-complex-numbers" accesskey="p" rel="previous">Properties of complex numbers</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Complex-arithmetic-operators-1"></a>
<h3 class="section">5.3 Complex arithmetic operators</h3>
<a name="index-complex-arithmetic"></a>

<dl>
<dt><a name="index-gsl_005fcomplex_005fadd"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_add</strong> <em>(gsl_complex <var>a</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the sum of the complex numbers <var>a</var> and
<var>b</var>, <em>z=a+b</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fsub"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sub</strong> <em>(gsl_complex <var>a</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the difference of the complex numbers <var>a</var> and
<var>b</var>, <em>z=a-b</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fmul"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_mul</strong> <em>(gsl_complex <var>a</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the product of the complex numbers <var>a</var> and
<var>b</var>, <em>z=ab</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fdiv"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_div</strong> <em>(gsl_complex <var>a</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the quotient of the complex numbers <var>a</var> and
<var>b</var>, <em>z=a/b</em>.
</p></dd></dl>


<dl>
<dt><a name="index-gsl_005fcomplex_005fadd_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_add_real</strong> <em>(gsl_complex <var>a</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the sum of the complex number <var>a</var> and the
real number <var>x</var>, <em>z=a+x</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fsub_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sub_real</strong> <em>(gsl_complex <var>a</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the difference of the complex number <var>a</var> and the
real number <var>x</var>, <em>z=a-x</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fmul_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_mul_real</strong> <em>(gsl_complex <var>a</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the product of the complex number <var>a</var> and the
real number <var>x</var>, <em>z=ax</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fdiv_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_div_real</strong> <em>(gsl_complex <var>a</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the quotient of the complex number <var>a</var> and the
real number <var>x</var>, <em>z=a/x</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fadd_005fimag"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_add_imag</strong> <em>(gsl_complex <var>a</var>, double <var>y</var>)</em></dt>
<dd><p>This function returns the sum of the complex number <var>a</var> and the
imaginary number <em>i</em><var>y</var>, <em>z=a+iy</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fsub_005fimag"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sub_imag</strong> <em>(gsl_complex <var>a</var>, double <var>y</var>)</em></dt>
<dd><p>This function returns the difference of the complex number <var>a</var> and the
imaginary number <em>i</em><var>y</var>, <em>z=a-iy</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fmul_005fimag"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_mul_imag</strong> <em>(gsl_complex <var>a</var>, double <var>y</var>)</em></dt>
<dd><p>This function returns the product of the complex number <var>a</var> and the
imaginary number <em>i</em><var>y</var>, <em>z=a*(iy)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fdiv_005fimag"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_div_imag</strong> <em>(gsl_complex <var>a</var>, double <var>y</var>)</em></dt>
<dd><p>This function returns the quotient of the complex number <var>a</var> and the
imaginary number <em>i</em><var>y</var>, <em>z=a/(iy)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fconjugate"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_conjugate</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><a name="index-conjugate-of-complex-number"></a>
<p>This function returns the complex conjugate of the complex number
<var>z</var>, <em>z^* = x - i y</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005finverse"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_inverse</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the inverse, or reciprocal, of the complex number
<var>z</var>, <em>1/z = (x - i y)/(x^2 + y^2)</em>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005fcomplex_005fnegative"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_negative</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the negative of the complex number
<var>z</var>, <em>-z = (-x) + i(-y)</em>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Elementary-Complex-Functions.html#Elementary-Complex-Functions" accesskey="n" rel="next">Elementary Complex Functions</a>, Previous: <a href="Properties-of-complex-numbers.html#Properties-of-complex-numbers" accesskey="p" rel="previous">Properties of complex numbers</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>