1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Debye Functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Debye Functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Debye Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Special-Functions.html#Special-Functions" rel="up" title="Special Functions">
<link href="Dilogarithm.html#Dilogarithm" rel="next" title="Dilogarithm">
<link href="Dawson-Function.html#Dawson-Function" rel="previous" title="Dawson Function">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Debye-Functions"></a>
<div class="header">
<p>
Next: <a href="Dilogarithm.html#Dilogarithm" accesskey="n" rel="next">Dilogarithm</a>, Previous: <a href="Dawson-Function.html#Dawson-Function" accesskey="p" rel="previous">Dawson Function</a>, Up: <a href="Special-Functions.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Debye-Functions-1"></a>
<h3 class="section">7.10 Debye Functions</h3>
<a name="index-Debye-functions"></a>
<p>The Debye functions <em>D_n(x)</em> are defined by the following integral,
</p>
<div class="example">
<pre class="example">D_n(x) = n/x^n \int_0^x dt (t^n/(e^t - 1))
</pre></div>
<p>For further information see Abramowitz &
Stegun, Section 27.1. The Debye functions are declared in the header
file <samp>gsl_sf_debye.h</samp>.
</p>
<dl>
<dt><a name="index-gsl_005fsf_005fdebye_005f1"></a>Function: <em>double</em> <strong>gsl_sf_debye_1</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fdebye_005f1_005fe"></a>Function: <em>int</em> <strong>gsl_sf_debye_1_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the first-order Debye function
<em>D_1(x) = (1/x) \int_0^x dt (t/(e^t - 1))</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fdebye_005f2"></a>Function: <em>double</em> <strong>gsl_sf_debye_2</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fdebye_005f2_005fe"></a>Function: <em>int</em> <strong>gsl_sf_debye_2_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the second-order Debye function
<em>D_2(x) = (2/x^2) \int_0^x dt (t^2/(e^t - 1))</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fdebye_005f3"></a>Function: <em>double</em> <strong>gsl_sf_debye_3</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fdebye_005f3_005fe"></a>Function: <em>int</em> <strong>gsl_sf_debye_3_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the third-order Debye function
<em>D_3(x) = (3/x^3) \int_0^x dt (t^3/(e^t - 1))</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fdebye_005f4"></a>Function: <em>double</em> <strong>gsl_sf_debye_4</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fdebye_005f4_005fe"></a>Function: <em>int</em> <strong>gsl_sf_debye_4_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the fourth-order Debye function
<em>D_4(x) = (4/x^4) \int_0^x dt (t^4/(e^t - 1))</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fdebye_005f5"></a>Function: <em>double</em> <strong>gsl_sf_debye_5</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fdebye_005f5_005fe"></a>Function: <em>int</em> <strong>gsl_sf_debye_5_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the fifth-order Debye function
<em>D_5(x) = (5/x^5) \int_0^x dt (t^5/(e^t - 1))</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fsf_005fdebye_005f6"></a>Function: <em>double</em> <strong>gsl_sf_debye_6</strong> <em>(double <var>x</var>)</em></dt>
<dt><a name="index-gsl_005fsf_005fdebye_005f6_005fe"></a>Function: <em>int</em> <strong>gsl_sf_debye_6_e</strong> <em>(double <var>x</var>, gsl_sf_result * <var>result</var>)</em></dt>
<dd><p>These routines compute the sixth-order Debye function
<em>D_6(x) = (6/x^6) \int_0^x dt (t^6/(e^t - 1))</em>.
</p></dd></dl>
</body>
</html>
|