1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Defining the ODE System</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Defining the ODE System">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Defining the ODE System">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Ordinary-Differential-Equations.html#Ordinary-Differential-Equations" rel="up" title="Ordinary Differential Equations">
<link href="Stepping-Functions.html#Stepping-Functions" rel="next" title="Stepping Functions">
<link href="Ordinary-Differential-Equations.html#Ordinary-Differential-Equations" rel="previous" title="Ordinary Differential Equations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Defining-the-ODE-System"></a>
<div class="header">
<p>
Next: <a href="Stepping-Functions.html#Stepping-Functions" accesskey="n" rel="next">Stepping Functions</a>, Up: <a href="Ordinary-Differential-Equations.html#Ordinary-Differential-Equations" accesskey="u" rel="up">Ordinary Differential Equations</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Defining-the-ODE-System-1"></a>
<h3 class="section">27.1 Defining the ODE System</h3>
<p>The routines solve the general <em>n</em>-dimensional first-order system,
</p>
<div class="example">
<pre class="example">dy_i(t)/dt = f_i(t, y_1(t), ..., y_n(t))
</pre></div>
<p>for <em>i = 1, \dots, n</em>. The stepping functions rely on the vector
of derivatives <em>f_i</em> and the Jacobian matrix,
<em>J_{ij} = df_i(t,y(t)) / dy_j</em>.
A system of equations is defined using the <code>gsl_odeiv2_system</code>
datatype.
</p>
<dl>
<dt><a name="index-gsl_005fodeiv2_005fsystem"></a>Data Type: <strong>gsl_odeiv2_system</strong></dt>
<dd><p>This data type defines a general ODE system with arbitrary parameters.
</p>
<dl compact="compact">
<dt><code>int (* function) (double t, const double y[], double dydt[], void * params)</code></dt>
<dd><p>This function should store the vector elements
<em>f_i(t,y,params)</em> in the array <var>dydt</var>,
for arguments (<var>t</var>,<var>y</var>) and parameters <var>params</var>.
</p>
<p>The function should return <code>GSL_SUCCESS</code> if the calculation was
completed successfully. Any other return value indicates an error. A
special return value <code>GSL_EBADFUNC</code> causes <code>gsl_odeiv2</code>
routines to immediately stop and return. If <code>function</code>
is modified (for example contents of <var>params</var>), the user must call an
appropriate reset function (<code>gsl_odeiv2_driver_reset</code>,
<code>gsl_odeiv2_evolve_reset</code> or <code>gsl_odeiv2_step_reset</code>)
before continuing. Use return values
distinct from standard GSL error codes to distinguish your function as
the source of the error.
</p>
</dd>
<dt><code>int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);</code></dt>
<dd><a name="index-Jacobian-matrix_002c-ODEs"></a>
<p>This function should store the vector of derivative elements
in the array <var>dfdt</var> and the Jacobian matrix <em>J_{ij}</em> in the array <var>dfdy</var>, regarded as a row-ordered
matrix <code>J(i,j) = dfdy[i * dimension + j]</code> where <code>dimension</code>
is the dimension of the system.
</p>
<p>Not all of the stepper algorithms of <code>gsl_odeiv2</code> make use of the
Jacobian matrix, so it may not be necessary to provide this function
(the <code>jacobian</code> element of the struct can be replaced by a null
pointer for those algorithms).
</p>
<p>The function should return <code>GSL_SUCCESS</code> if the calculation was
completed successfully. Any other return value indicates an error. A
special return value <code>GSL_EBADFUNC</code> causes <code>gsl_odeiv2</code>
routines to immediately stop and return. If <code>jacobian</code>
is modified (for example contents of <var>params</var>), the user must call an
appropriate reset function (<code>gsl_odeiv2_driver_reset</code>,
<code>gsl_odeiv2_evolve_reset</code> or <code>gsl_odeiv2_step_reset</code>)
before continuing. Use return values
distinct from standard GSL error codes to distinguish your function as
the source of the error.
</p>
</dd>
<dt><code>size_t dimension;</code></dt>
<dd><p>This is the dimension of the system of equations.
</p>
</dd>
<dt><code>void * params</code></dt>
<dd><p>This is a pointer to the arbitrary parameters of the system.
</p></dd>
</dl>
</dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Stepping-Functions.html#Stepping-Functions" accesskey="n" rel="next">Stepping Functions</a>, Up: <a href="Ordinary-Differential-Equations.html#Ordinary-Differential-Equations" accesskey="u" rel="up">Ordinary Differential Equations</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|