1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Elementary Complex Functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Elementary Complex Functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Elementary Complex Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Complex-Numbers.html#Complex-Numbers" rel="up" title="Complex Numbers">
<link href="Complex-Trigonometric-Functions.html#Complex-Trigonometric-Functions" rel="next" title="Complex Trigonometric Functions">
<link href="Complex-arithmetic-operators.html#Complex-arithmetic-operators" rel="previous" title="Complex arithmetic operators">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Elementary-Complex-Functions"></a>
<div class="header">
<p>
Next: <a href="Complex-Trigonometric-Functions.html#Complex-Trigonometric-Functions" accesskey="n" rel="next">Complex Trigonometric Functions</a>, Previous: <a href="Complex-arithmetic-operators.html#Complex-arithmetic-operators" accesskey="p" rel="previous">Complex arithmetic operators</a>, Up: <a href="Complex-Numbers.html#Complex-Numbers" accesskey="u" rel="up">Complex Numbers</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Elementary-Complex-Functions-1"></a>
<h3 class="section">5.4 Elementary Complex Functions</h3>
<dl>
<dt><a name="index-gsl_005fcomplex_005fsqrt"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sqrt</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><a name="index-square-root-of-complex-number"></a>
<p>This function returns the square root of the complex number <var>z</var>,
<em>\sqrt z</em>. The branch cut is the negative real axis. The result
always lies in the right half of the complex plane.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fsqrt_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_sqrt_real</strong> <em>(double <var>x</var>)</em></dt>
<dd><p>This function returns the complex square root of the real number
<var>x</var>, where <var>x</var> may be negative.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fpow"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_pow</strong> <em>(gsl_complex <var>z</var>, gsl_complex <var>a</var>)</em></dt>
<dd><a name="index-power-of-complex-number"></a>
<a name="index-exponentiation-of-complex-number"></a>
<p>The function returns the complex number <var>z</var> raised to the complex
power <var>a</var>, <em>z^a</em>. This is computed as <em>\exp(\log(z)*a)</em>
using complex logarithms and complex exponentials.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fpow_005freal"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_pow_real</strong> <em>(gsl_complex <var>z</var>, double <var>x</var>)</em></dt>
<dd><p>This function returns the complex number <var>z</var> raised to the real
power <var>x</var>, <em>z^x</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005fexp"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_exp</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex exponential of the complex number
<var>z</var>, <em>\exp(z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005flog"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_log</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><a name="index-logarithm-of-complex-number"></a>
<p>This function returns the complex natural logarithm (base <em>e</em>) of
the complex number <var>z</var>, <em>\log(z)</em>. The branch cut is the
negative real axis.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005flog10"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_log10</strong> <em>(gsl_complex <var>z</var>)</em></dt>
<dd><p>This function returns the complex base-10 logarithm of
the complex number <var>z</var>, <em>\log_10 (z)</em>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fcomplex_005flog_005fb"></a>Function: <em>gsl_complex</em> <strong>gsl_complex_log_b</strong> <em>(gsl_complex <var>z</var>, gsl_complex <var>b</var>)</em></dt>
<dd><p>This function returns the complex base-<var>b</var> logarithm of the complex
number <var>z</var>, <em>\log_b(z)</em>. This quantity is computed as the ratio
<em>\log(z)/\log(b)</em>.
</p></dd></dl>
</body>
</html>
|