1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Elementary Functions</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Elementary Functions">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Elementary Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Mathematical-Functions.html#Mathematical-Functions" rel="up" title="Mathematical Functions">
<link href="Small-integer-powers.html#Small-integer-powers" rel="next" title="Small integer powers">
<link href="Infinities-and-Not_002da_002dnumber.html#Infinities-and-Not_002da_002dnumber" rel="previous" title="Infinities and Not-a-number">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Elementary-Functions"></a>
<div class="header">
<p>
Next: <a href="Small-integer-powers.html#Small-integer-powers" accesskey="n" rel="next">Small integer powers</a>, Previous: <a href="Infinities-and-Not_002da_002dnumber.html#Infinities-and-Not_002da_002dnumber" accesskey="p" rel="previous">Infinities and Not-a-number</a>, Up: <a href="Mathematical-Functions.html#Mathematical-Functions" accesskey="u" rel="up">Mathematical Functions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Elementary-Functions-1"></a>
<h3 class="section">4.3 Elementary Functions</h3>
<p>The following routines provide portable implementations of functions
found in the BSD math library. When native versions are not available
the functions described here can be used instead. The substitution can
be made automatically if you use <code>autoconf</code> to compile your
application (see <a href="Portability-functions.html#Portability-functions">Portability functions</a>).
</p>
<dl>
<dt><a name="index-gsl_005flog1p"></a>Function: <em>double</em> <strong>gsl_log1p</strong> <em>(const double <var>x</var>)</em></dt>
<dd><a name="index-log1p"></a>
<a name="index-logarithm_002c-computed-accurately-near-1"></a>
<p>This function computes the value of <em>\log(1+x)</em> in a way that is
accurate for small <var>x</var>. It provides an alternative to the BSD math
function <code>log1p(x)</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fexpm1"></a>Function: <em>double</em> <strong>gsl_expm1</strong> <em>(const double <var>x</var>)</em></dt>
<dd><a name="index-expm1"></a>
<a name="index-exponential_002c-difference-from-1-computed-accurately"></a>
<p>This function computes the value of <em>\exp(x)-1</em> in a way that is
accurate for small <var>x</var>. It provides an alternative to the BSD math
function <code>expm1(x)</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fhypot"></a>Function: <em>double</em> <strong>gsl_hypot</strong> <em>(const double <var>x</var>, const double <var>y</var>)</em></dt>
<dd><a name="index-hypot"></a>
<a name="index-euclidean-distance-function_002c-hypot"></a>
<a name="index-length_002c-computed-accurately-using-hypot"></a>
<p>This function computes the value of
<em>\sqrt{x^2 + y^2}</em> in a way that avoids overflow. It provides an
alternative to the BSD math function <code>hypot(x,y)</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fhypot3"></a>Function: <em>double</em> <strong>gsl_hypot3</strong> <em>(const double <var>x</var>, const double <var>y</var>, const double <var>z</var>)</em></dt>
<dd><a name="index-euclidean-distance-function_002c-hypot-1"></a>
<a name="index-length_002c-computed-accurately-using-hypot-1"></a>
<p>This function computes the value of
<em>\sqrt{x^2 + y^2 + z^2}</em> in a way that avoids overflow.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005facosh"></a>Function: <em>double</em> <strong>gsl_acosh</strong> <em>(const double <var>x</var>)</em></dt>
<dd><a name="index-acosh"></a>
<a name="index-hyperbolic-cosine_002c-inverse"></a>
<a name="index-inverse-hyperbolic-cosine"></a>
<p>This function computes the value of <em>\arccosh(x)</em>. It provides an
alternative to the standard math function <code>acosh(x)</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fasinh"></a>Function: <em>double</em> <strong>gsl_asinh</strong> <em>(const double <var>x</var>)</em></dt>
<dd><a name="index-asinh"></a>
<a name="index-hyperbolic-sine_002c-inverse"></a>
<a name="index-inverse-hyperbolic-sine"></a>
<p>This function computes the value of <em>\arcsinh(x)</em>. It provides an
alternative to the standard math function <code>asinh(x)</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fatanh"></a>Function: <em>double</em> <strong>gsl_atanh</strong> <em>(const double <var>x</var>)</em></dt>
<dd><a name="index-atanh"></a>
<a name="index-hyperbolic-tangent_002c-inverse"></a>
<a name="index-inverse-hyperbolic-tangent"></a>
<p>This function computes the value of <em>\arctanh(x)</em>. It provides an
alternative to the standard math function <code>atanh(x)</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005fldexp"></a>Function: <em>double</em> <strong>gsl_ldexp</strong> <em>(double <var>x</var>, int <var>e</var>)</em></dt>
<dd><a name="index-ldexp"></a>
<p>This function computes the value of <em>x * 2^e</em>. It provides an
alternative to the standard math function <code>ldexp(x,e)</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gsl_005ffrexp"></a>Function: <em>double</em> <strong>gsl_frexp</strong> <em>(double <var>x</var>, int * <var>e</var>)</em></dt>
<dd><a name="index-frexp"></a>
<p>This function splits the number <em>x</em> into its normalized fraction
<em>f</em> and exponent <em>e</em>, such that <em>x = f * 2^e</em> and
<em>0.5 <= f < 1</em>. The function returns <em>f</em> and stores the
exponent in <em>e</em>. If <em>x</em> is zero, both <em>f</em> and <em>e</em>
are set to zero. This function provides an alternative to the standard
math function <code>frexp(x, e)</code>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Small-integer-powers.html#Small-integer-powers" accesskey="n" rel="next">Small integer powers</a>, Previous: <a href="Infinities-and-Not_002da_002dnumber.html#Infinities-and-Not_002da_002dnumber" accesskey="p" rel="previous">Infinities and Not-a-number</a>, Up: <a href="Mathematical-Functions.html#Mathematical-Functions" accesskey="u" rel="up">Mathematical Functions</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|