1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".
(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library – Reference Manual: Fitting robust linear regression example</title>
<meta name="description" content="GNU Scientific Library – Reference Manual: Fitting robust linear regression example">
<meta name="keywords" content="GNU Scientific Library – Reference Manual: Fitting robust linear regression example">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Fitting-Examples.html#Fitting-Examples" rel="up" title="Fitting Examples">
<link href="Fitting-large-linear-systems-example.html#Fitting-large-linear-systems-example" rel="next" title="Fitting large linear systems example">
<link href="Fitting-regularized-linear-regression-example-2.html#Fitting-regularized-linear-regression-example-2" rel="previous" title="Fitting regularized linear regression example 2">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Fitting-robust-linear-regression-example"></a>
<div class="header">
<p>
Next: <a href="Fitting-large-linear-systems-example.html#Fitting-large-linear-systems-example" accesskey="n" rel="next">Fitting large linear systems example</a>, Previous: <a href="Fitting-regularized-linear-regression-example-2.html#Fitting-regularized-linear-regression-example-2" accesskey="p" rel="previous">Fitting regularized linear regression example 2</a>, Up: <a href="Fitting-Examples.html#Fitting-Examples" accesskey="u" rel="up">Fitting Examples</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Robust-Linear-Regression-Example"></a>
<h4 class="subsection">38.8.5 Robust Linear Regression Example</h4>
<p>The next program demonstrates the advantage of robust least squares on
a dataset with outliers. The program generates linear <em>(x,y)</em>
data pairs on the line <em>y = 1.45 x + 3.88</em>, adds some random
noise, and inserts 3 outliers into the dataset. Both the robust
and ordinary least squares (OLS) coefficients are computed for
comparison.
</p>
<div class="example">
<pre class="verbatim">#include <stdio.h>
#include <gsl/gsl_multifit.h>
#include <gsl/gsl_randist.h>
int
dofit(const gsl_multifit_robust_type *T,
const gsl_matrix *X, const gsl_vector *y,
gsl_vector *c, gsl_matrix *cov)
{
int s;
gsl_multifit_robust_workspace * work
= gsl_multifit_robust_alloc (T, X->size1, X->size2);
s = gsl_multifit_robust (X, y, c, cov, work);
gsl_multifit_robust_free (work);
return s;
}
int
main (int argc, char **argv)
{
size_t i;
size_t n;
const size_t p = 2; /* linear fit */
gsl_matrix *X, *cov;
gsl_vector *x, *y, *c, *c_ols;
const double a = 1.45; /* slope */
const double b = 3.88; /* intercept */
gsl_rng *r;
if (argc != 2)
{
fprintf (stderr,"usage: robfit n\n");
exit (-1);
}
n = atoi (argv[1]);
X = gsl_matrix_alloc (n, p);
x = gsl_vector_alloc (n);
y = gsl_vector_alloc (n);
c = gsl_vector_alloc (p);
c_ols = gsl_vector_alloc (p);
cov = gsl_matrix_alloc (p, p);
r = gsl_rng_alloc(gsl_rng_default);
/* generate linear dataset */
for (i = 0; i < n - 3; i++)
{
double dx = 10.0 / (n - 1.0);
double ei = gsl_rng_uniform(r);
double xi = -5.0 + i * dx;
double yi = a * xi + b;
gsl_vector_set (x, i, xi);
gsl_vector_set (y, i, yi + ei);
}
/* add a few outliers */
gsl_vector_set(x, n - 3, 4.7);
gsl_vector_set(y, n - 3, -8.3);
gsl_vector_set(x, n - 2, 3.5);
gsl_vector_set(y, n - 2, -6.7);
gsl_vector_set(x, n - 1, 4.1);
gsl_vector_set(y, n - 1, -6.0);
/* construct design matrix X for linear fit */
for (i = 0; i < n; ++i)
{
double xi = gsl_vector_get(x, i);
gsl_matrix_set (X, i, 0, 1.0);
gsl_matrix_set (X, i, 1, xi);
}
/* perform robust and OLS fit */
dofit(gsl_multifit_robust_ols, X, y, c_ols, cov);
dofit(gsl_multifit_robust_bisquare, X, y, c, cov);
/* output data and model */
for (i = 0; i < n; ++i)
{
double xi = gsl_vector_get(x, i);
double yi = gsl_vector_get(y, i);
gsl_vector_view v = gsl_matrix_row(X, i);
double y_ols, y_rob, y_err;
gsl_multifit_robust_est(&v.vector, c, cov, &y_rob, &y_err);
gsl_multifit_robust_est(&v.vector, c_ols, cov, &y_ols, &y_err);
printf("%g %g %g %g\n", xi, yi, y_rob, y_ols);
}
#define C(i) (gsl_vector_get(c,(i)))
#define COV(i,j) (gsl_matrix_get(cov,(i),(j)))
{
printf ("# best fit: Y = %g + %g X\n",
C(0), C(1));
printf ("# covariance matrix:\n");
printf ("# [ %+.5e, %+.5e\n",
COV(0,0), COV(0,1));
printf ("# %+.5e, %+.5e\n",
COV(1,0), COV(1,1));
}
gsl_matrix_free (X);
gsl_vector_free (x);
gsl_vector_free (y);
gsl_vector_free (c);
gsl_vector_free (c_ols);
gsl_matrix_free (cov);
gsl_rng_free(r);
return 0;
}
</pre></div>
<p>The output from the program is shown in the following plot.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Fitting-large-linear-systems-example.html#Fitting-large-linear-systems-example" accesskey="n" rel="next">Fitting large linear systems example</a>, Previous: <a href="Fitting-regularized-linear-regression-example-2.html#Fitting-regularized-linear-regression-example-2" accesskey="p" rel="previous">Fitting regularized linear regression example 2</a>, Up: <a href="Fitting-Examples.html#Fitting-Examples" accesskey="u" rel="up">Fitting Examples</a> [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|