## File: Gamma-Functions.html

package info (click to toggle)
gsl-ref-html 2.3-1
• area: non-free
• in suites: bullseye, buster, sid
• size: 6,876 kB
• ctags: 4,574
• sloc: makefile: 35
 file content (159 lines) | stat: -rw-r--r-- 8,468 bytes parent folder | download
 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159  GNU Scientific Library – Reference Manual: Gamma Functions

7.19.1 Gamma Functions

The Gamma function is defined by the following integral,

\Gamma(x) = \int_0^\infty dt  t^{x-1} \exp(-t)

It is related to the factorial function by \Gamma(n)=(n-1)! for positive integer n. Further information on the Gamma function can be found in Abramowitz & Stegun, Chapter 6.

Function: double gsl_sf_gamma (double x)
Function: int gsl_sf_gamma_e (double x, gsl_sf_result * result)

These routines compute the Gamma function \Gamma(x), subject to x not being a negative integer or zero. The function is computed using the real Lanczos method. The maximum value of x such that \Gamma(x) is not considered an overflow is given by the macro GSL_SF_GAMMA_XMAX and is 171.0.

Function: double gsl_sf_lngamma (double x)
Function: int gsl_sf_lngamma_e (double x, gsl_sf_result * result)

These routines compute the logarithm of the Gamma function, \log(\Gamma(x)), subject to x not being a negative integer or zero. For x<0 the real part of \log(\Gamma(x)) is returned, which is equivalent to \log(|\Gamma(x)|). The function is computed using the real Lanczos method.

Function: int gsl_sf_lngamma_sgn_e (double x, gsl_sf_result * result_lg, double * sgn)

This routine computes the sign of the gamma function and the logarithm of its magnitude, subject to x not being a negative integer or zero. The function is computed using the real Lanczos method. The value of the gamma function and its error can be reconstructed using the relation \Gamma(x) = sgn * \exp(result\_lg), taking into account the two components of result_lg.

Function: double gsl_sf_gammastar (double x)
Function: int gsl_sf_gammastar_e (double x, gsl_sf_result * result)

These routines compute the regulated Gamma Function \Gamma^*(x) for x > 0. The regulated gamma function is given by,

\Gamma^*(x) = \Gamma(x)/(\sqrt{2\pi} x^{(x-1/2)} \exp(-x))             = (1 + (1/12x) + ...)  for x \to \infty

and is a useful suggestion of Temme.

Function: double gsl_sf_gammainv (double x)
Function: int gsl_sf_gammainv_e (double x, gsl_sf_result * result)

These routines compute the reciprocal of the gamma function, 1/\Gamma(x) using the real Lanczos method.

Function: int gsl_sf_lngamma_complex_e (double zr, double zi, gsl_sf_result * lnr, gsl_sf_result * arg)

This routine computes \log(\Gamma(z)) for complex z=z_r+i z_i and z not a negative integer or zero, using the complex Lanczos method. The returned parameters are lnr = \log|\Gamma(z)| and arg = \arg(\Gamma(z)) in (-\pi,\pi]. Note that the phase part (arg) is not well-determined when |z| is very large, due to inevitable roundoff in restricting to (-\pi,\pi]. This will result in a GSL_ELOSS error when it occurs. The absolute value part (lnr), however, never suffers from loss of precision.