File: Hessenberg-Decomposition-of-Real-Matrices.html

package info (click to toggle)
gsl-ref-html 2.3-1
  • links: PTS
  • area: non-free
  • in suites: bullseye, buster, sid
  • size: 6,876 kB
  • ctags: 4,574
  • sloc: makefile: 35
file content (134 lines) | stat: -rw-r--r-- 7,792 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Hessenberg Decomposition of Real Matrices</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Hessenberg Decomposition of Real Matrices">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Hessenberg Decomposition of Real Matrices">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="Linear-Algebra.html#Linear-Algebra" rel="up" title="Linear Algebra">
<link href="Hessenberg_002dTriangular-Decomposition-of-Real-Matrices.html#Hessenberg_002dTriangular-Decomposition-of-Real-Matrices" rel="next" title="Hessenberg-Triangular Decomposition of Real Matrices">
<link href="Tridiagonal-Decomposition-of-Hermitian-Matrices.html#Tridiagonal-Decomposition-of-Hermitian-Matrices" rel="previous" title="Tridiagonal Decomposition of Hermitian Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Hessenberg-Decomposition-of-Real-Matrices"></a>
<div class="header">
<p>
Next: <a href="Hessenberg_002dTriangular-Decomposition-of-Real-Matrices.html#Hessenberg_002dTriangular-Decomposition-of-Real-Matrices" accesskey="n" rel="next">Hessenberg-Triangular Decomposition of Real Matrices</a>, Previous: <a href="Tridiagonal-Decomposition-of-Hermitian-Matrices.html#Tridiagonal-Decomposition-of-Hermitian-Matrices" accesskey="p" rel="previous">Tridiagonal Decomposition of Hermitian Matrices</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Hessenberg-Decomposition-of-Real-Matrices-1"></a>
<h3 class="section">14.11 Hessenberg Decomposition of Real Matrices</h3>
<a name="index-Hessenberg-decomposition"></a>

<p>A general real matrix <em>A</em> can be decomposed by orthogonal
similarity transformations into the form
</p>
<div class="example">
<pre class="example">A = U H U^T
</pre></div>

<p>where <em>U</em> is orthogonal and <em>H</em> is an upper Hessenberg matrix,
meaning that it has zeros below the first subdiagonal. The
Hessenberg reduction is the first step in the Schur decomposition
for the nonsymmetric eigenvalue problem, but has applications in
other areas as well.
</p>
<dl>
<dt><a name="index-gsl_005flinalg_005fhessenberg_005fdecomp"></a>Function: <em>int</em> <strong>gsl_linalg_hessenberg_decomp</strong> <em>(gsl_matrix * <var>A</var>, gsl_vector * <var>tau</var>)</em></dt>
<dd><p>This function computes the Hessenberg decomposition of the matrix
<var>A</var> by applying the similarity transformation <em>H = U^T A U</em>.
On output, <em>H</em> is stored in the upper portion of <var>A</var>. The
information required to construct the matrix <em>U</em> is stored in
the lower triangular portion of <var>A</var>. <em>U</em> is a product
of <em>N - 2</em> Householder matrices. The Householder vectors
are stored in the lower portion of <var>A</var> (below the subdiagonal)
and the Householder coefficients are stored in the vector <var>tau</var>.
<var>tau</var> must be of length <var>N</var>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005flinalg_005fhessenberg_005funpack"></a>Function: <em>int</em> <strong>gsl_linalg_hessenberg_unpack</strong> <em>(gsl_matrix * <var>H</var>, gsl_vector * <var>tau</var>, gsl_matrix * <var>U</var>)</em></dt>
<dd><p>This function constructs the orthogonal matrix <em>U</em> from the
information stored in the Hessenberg matrix <var>H</var> along with the
vector <var>tau</var>. <var>H</var> and <var>tau</var> are outputs from
<code>gsl_linalg_hessenberg_decomp</code>.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005flinalg_005fhessenberg_005funpack_005faccum"></a>Function: <em>int</em> <strong>gsl_linalg_hessenberg_unpack_accum</strong> <em>(gsl_matrix * <var>H</var>, gsl_vector * <var>tau</var>, gsl_matrix * <var>V</var>)</em></dt>
<dd><p>This function is similar to <code>gsl_linalg_hessenberg_unpack</code>, except
it accumulates the matrix <var>U</var> into <var>V</var>, so that <em>V' = VU</em>.
The matrix <var>V</var> must be initialized prior to calling this function.
Setting <var>V</var> to the identity matrix provides the same result as
<code>gsl_linalg_hessenberg_unpack</code>. If <var>H</var> is order <var>N</var>, then
<var>V</var> must have <var>N</var> columns but may have any number of rows.
</p></dd></dl>

<dl>
<dt><a name="index-gsl_005flinalg_005fhessenberg_005fset_005fzero"></a>Function: <em>int</em> <strong>gsl_linalg_hessenberg_set_zero</strong> <em>(gsl_matrix * <var>H</var>)</em></dt>
<dd><p>This function sets the lower triangular portion of <var>H</var>, below
the subdiagonal, to zero. It is useful for clearing out the
Householder vectors after calling <code>gsl_linalg_hessenberg_decomp</code>.
</p></dd></dl>

<hr>
<div class="header">
<p>
Next: <a href="Hessenberg_002dTriangular-Decomposition-of-Real-Matrices.html#Hessenberg_002dTriangular-Decomposition-of-Real-Matrices" accesskey="n" rel="next">Hessenberg-Triangular Decomposition of Real Matrices</a>, Previous: <a href="Tridiagonal-Decomposition-of-Hermitian-Matrices.html#Tridiagonal-Decomposition-of-Hermitian-Matrices" accesskey="p" rel="previous">Tridiagonal Decomposition of Hermitian Matrices</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>