File: Interpolation.html

package info (click to toggle)
gsl-ref-html 2.3-1
  • links: PTS
  • area: non-free
  • in suites: bullseye, buster, sid
  • size: 6,876 kB
  • ctags: 4,574
  • sloc: makefile: 35
file content (133 lines) | stat: -rw-r--r-- 8,631 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 The GSL Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "GNU General Public License" and "Free Software
Needs Free Documentation", the Front-Cover text being "A GNU Manual",
and with the Back-Cover Text being (a) (see below). A copy of the
license is included in the section entitled "GNU Free Documentation
License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this
GNU Manual." -->
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>GNU Scientific Library &ndash; Reference Manual: Interpolation</title>

<meta name="description" content="GNU Scientific Library &ndash; Reference Manual: Interpolation">
<meta name="keywords" content="GNU Scientific Library &ndash; Reference Manual: Interpolation">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link href="index.html#Top" rel="start" title="Top">
<link href="Function-Index.html#Function-Index" rel="index" title="Function Index">
<link href="index.html#Top" rel="up" title="Top">
<link href="1D-Introduction-to-Interpolation.html#g_t1D-Introduction-to-Interpolation" rel="next" title="1D Introduction to Interpolation">
<link href="ODE-References-and-Further-Reading.html#ODE-References-and-Further-Reading" rel="previous" title="ODE References and Further Reading">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Interpolation"></a>
<div class="header">
<p>
Next: <a href="Numerical-Differentiation.html#Numerical-Differentiation" accesskey="n" rel="next">Numerical Differentiation</a>, Previous: <a href="Ordinary-Differential-Equations.html#Ordinary-Differential-Equations" accesskey="p" rel="previous">Ordinary Differential Equations</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Interpolation-1"></a>
<h2 class="chapter">28 Interpolation</h2>
<a name="index-interpolation"></a>
<a name="index-spline"></a>

<p>This chapter describes functions for performing interpolation.  The
library provides a variety of interpolation methods, including Cubic,
Akima, and Steffen splines.  The interpolation types are interchangeable,
allowing different methods to be used without recompiling.
Interpolations can be defined for both normal and periodic boundary
conditions.  Additional functions are available for computing
derivatives and integrals of interpolating functions. Routines
are provided for interpolating both one and two dimensional datasets.
</p>
<p>These interpolation methods produce curves that pass through each
datapoint.  To interpolate noisy data with a smoothing curve see
<a href="Basis-Splines.html#Basis-Splines">Basis Splines</a>.
</p>
<p>The functions described in this section are declared in the header files
<samp>gsl_interp.h</samp> and <samp>gsl_spline.h</samp>.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">&bull; <a href="1D-Introduction-to-Interpolation.html#g_t1D-Introduction-to-Interpolation" accesskey="1">1D Introduction to Interpolation</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="1D-Interpolation-Functions.html#g_t1D-Interpolation-Functions" accesskey="2">1D Interpolation Functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="1D-Interpolation-Types.html#g_t1D-Interpolation-Types" accesskey="3">1D Interpolation Types</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="1D-Index-Look_002dup-and-Acceleration.html#g_t1D-Index-Look_002dup-and-Acceleration" accesskey="4">1D Index Look-up and Acceleration</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="1D-Evaluation-of-Interpolating-Functions.html#g_t1D-Evaluation-of-Interpolating-Functions" accesskey="5">1D Evaluation of Interpolating Functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="1D-Higher_002dlevel-Interface.html#g_t1D-Higher_002dlevel-Interface" accesskey="6">1D Higher-level Interface</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="1D-Interpolation-Example-programs.html#g_t1D-Interpolation-Example-programs" accesskey="7">1D Interpolation Example programs</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="1D-Interpolation-References-and-Further-Reading.html#g_t1D-Interpolation-References-and-Further-Reading" accesskey="8">1D Interpolation References and Further Reading</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="2D-Introduction-to-Interpolation.html#g_t2D-Introduction-to-Interpolation" accesskey="9">2D Introduction to Interpolation</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="2D-Interpolation-Functions.html#g_t2D-Interpolation-Functions">2D Interpolation Functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="2D-Interpolation-Grids.html#g_t2D-Interpolation-Grids">2D Interpolation Grids</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="2D-Interpolation-Types.html#g_t2D-Interpolation-Types">2D Interpolation Types</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="2D-Evaluation-of-Interpolating-Functions.html#g_t2D-Evaluation-of-Interpolating-Functions">2D Evaluation of Interpolating Functions</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="2D-Higher_002dlevel-Interface.html#g_t2D-Higher_002dlevel-Interface">2D Higher-level Interface</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">&bull; <a href="2D-Interpolation-Example-programs.html#g_t2D-Interpolation-Example-programs">2D Interpolation Example programs</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
</td></tr>
</table>

<hr>
<div class="header">
<p>
Next: <a href="Numerical-Differentiation.html#Numerical-Differentiation" accesskey="n" rel="next">Numerical Differentiation</a>, Previous: <a href="Ordinary-Differential-Equations.html#Ordinary-Differential-Equations" accesskey="p" rel="previous">Ordinary Differential Equations</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="Function-Index.html#Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>